

OPERATIONAL CO₂ SEQUESTRATION PROJECTS AT GAZ DE FRANCE

S. SAYSSET, C. RIGOLLET, J. GITTON, R. DREUX

WGC - 2006

RESEARCH DIVISION

What are the costs of CCS?

Capture

Different techniques are available About 75% of the CCS costs NEED to REDUCE COSTS

Transport

Pipe or ships

Costs depend strongly on the volumes being transported and on the distances involved : 2 to 7 €/t CO₂ for 100 km NO BIG TECHNICAL CHALLENGE

Diapo 3

Storage

Natural underground reservoir (depleted O&G fields, coal seams, saline aquifers...)

Costs depend on the site, its location : 2 to 10 €/t CO₂ NEED to DEMONSTRATE the FAISABILITY through PILOT PLANTS

June 2006

Gaz de France and operational CCS

CASTOR (EU)

RECOPOL (EU)

SNOVHIT

K12B (CRUST)

PICOREF

Diapo 4

Gaz de France

Gaz de France	CASTOR project (EU - FP 6) « CO ₂ , from Capture to Storage »
	Objectives
	Reduce the cost of CO ₂ post-combustion capture
	Contribute to the feasibility & acceptance of the geological storage concept
Diapo 5	 Validate the concept on real sites Pilot testing for capture (25 t CO₂ / day) Detailed studies of future storage projects
RESEARCH DIVISION	CASTOR C2 then Capture & Storage

CASTOR project

- Budget: 15,8 M€
- EU funding: 8,5 M€
- Duration: 4 years (2004 2008)
- 30 partners from 11 European countries

Co-ordinator: IFP

Chair of the Executive Board: Statoil

R&D IFP (FR) TNO (NL) SINTEF (NO) NTNU (NO) BGS (UK) BGR (DE) BRGM (FR) GEUS (DK) IMPERIAL (UK) OGS (IT) TWENTE U. (NL) STUTTGARTT U. (DE)

Oil & Gas STATOIL (NO) GAZ de FRANCE (FR) REPSOL (SP) ENITecnologie (IT) ROHOEL (AT) Power Companies VATTENFALL (SE) ELSAM (DK) ENERGI E2 (DK) RWE (DE) PPC (GR) POWERGEN (UK) Manufacturers ALSTOM POWER (FR) MITSUI BABCOCK (UK) SIEMENS (DE) BASF (DE) GVS (IT)

> CASTOR 22 from Capture b sbrage

Diapo 6

RESEARCH DIVIS

CASTOR project : capture

Esbjerg Power unit (Elsam)

Application in modern coal-fired power station: Esbjerg PS operated by ELSAM

- Capacity 1 ton/h CO₂
- Pilot plant is the largest test facility in the world

Diapo 7

CASTOR project : storage

Objectives

Focus on field cases to cover some geological variability

Casablanca case (Repsol, Spain): Depleted offshore oil field, deep.

Atzbach-Schwanenstadt case (Rohoel AG, Austria): Depleted onshore gas field, shallow.

K12B case (Gaz de France, Netherlands) Enhanced gas recovery, offshore, deep; injection started in 2004.

Diapo 8

Snøhvit case (Statoil, Norway) Aquifer below gas/condensate field, offshore; injection will start in 2007.

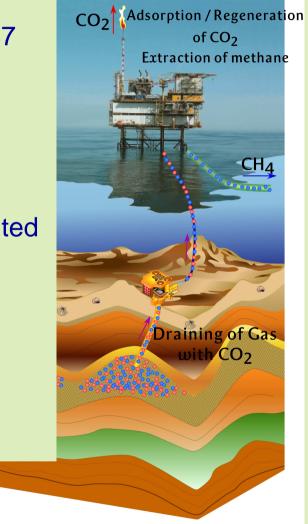
Diapo 9

K12-B is part of the dutch CRUST project

RESEARCH DIVIS

CO₂ **R**euse through **U**nderground **ST**orage

K12-B, The Netherland


Before 2004

- K12-B gas field has been operated since 1987
- The gas produced contains a relatively large amount of CO₂ (13%)
- CO₂ was separated from natural gas and vented to the atmosphere before injection project

Dia

Since 2004, CO₂ is re- injected

RESEARCH DIVISIONIn the framework of :
CO2 Reuse though Underground Storage (NL)
CO2GEONET and CASTOR (EU)June 2006Partner : Gaz de France, TNO (NL)



Gaz de France

K12-B – a 3 phases project

- Feasibility study (2002-2003)
- Operational implementation test (2004-2006)
 - ☞ 20 kt CO₂/y about 22 €/t CO₂
- Scale-up
 - ☞ potential of 400 kt CO₂/an about 8 €/t CO₂

Reservoir size estimated to 8Mt CO₂, i.e. 0.5% of the industrial emission of the Netherlands over 20 years.

Diapo 11

PICOREF project (RTPG - ANR)

«CO₂ trapping in reservoir in France »

Main objectives

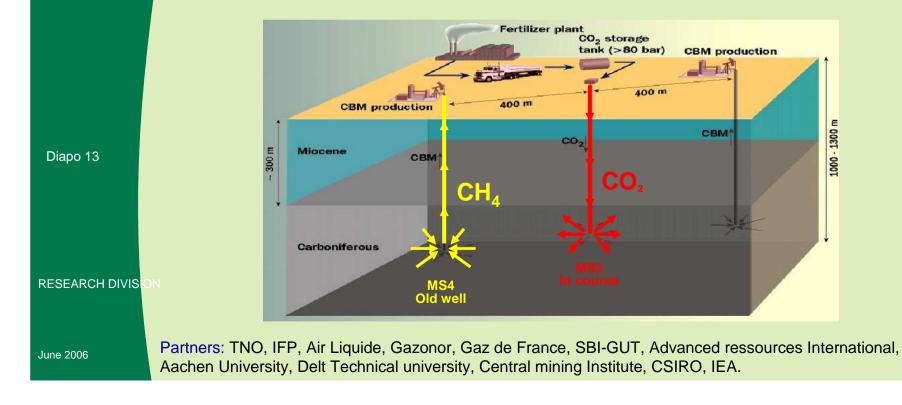
Identify injection sites in France and define pilot operations from a selection of geological reservoir targets

Elaborate and test a methodological work-flow chart able to address a site evaluation for a CO₂ storage project

Diapo 12

R&D BRGM IFP INERIS Industry Air Liquide Alstom CFG Services CGG Correx Gaz de France

Gaz de France Géostock Magnitude La SNET Total Universties ARMINES-ENSM ICMCB-CNRS LMTG-CNRS LGIT-CNRS TPHY-ISTEEM LAEGO-INPL

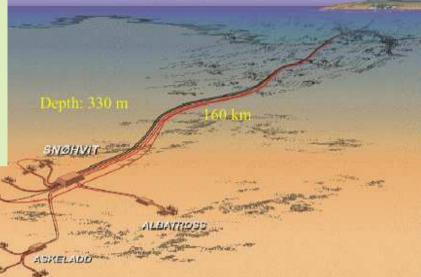


RECOPOL project (EU - FP 5)

 Reduction of CO₂ emission by means of CO₂ storage in coal seams in Silesian Coal Basin in Poland »

Main objectives

- Evaluate the feasibility of CO₂ sequestration in coal beds
- © Combine CO₂ sequestration with natural gas production


Gaz de France

SNØHVIT, Norway

 The gas produced will contain about 6-12% of CO₂

Production will begin late 2006, and 0.75 Mt CO₂/y injected

Diapo

RESEARCH DIVIS

Partners : Statoil, Petoro, Total, Gaz de France, Amerada Hess and RWE

CONCLUSIONS

Following IPCC, Carbon Capture and Storage can make a significant contribution to GHG emission reduction

It is estimate to 2000 Gt CO_2 and may represent 15%- 55% of the mitigation effort to 2100, depending of economic conditions.

Carbon capture and storage challenges :

- ✓ Capture costs reduction
- Pilot and demonstration plants
- ✓ Public awareness and acceptance
- ✓ Legal and regulatory framework
- ✓ Long-term policy framework

Diapo 15