

#### Predicted demand for natural gas in Asia



# Northeast Asia

- Asian Pipeline Research Society of Japan (APRSJ)
- Northeast Asian Natural Gas Pipeline Forum (NAGPF)

" Proposal for a Northeast Asian Hydrogen Highway:

From a Natural-gas-based to a Hydrogen-based Society "

- 9<sup>th</sup> NAGPF meeting Sep 05, Seoul
- Windpower 06, June 06, Pittsburgh
- 23<sup>rd</sup> World Gas Conference, June 06, Amsterdam
- 16<sup>th</sup> World Hydrogen Energy Conference, June 06, Lyon





## Large Renewable Resources ?





L.

🖌 😂

1

 $\nabla$ 

| s 00 |       |       |            |               |
|------|-------|-------|------------|---------------|
|      | Power | Class | Speed      | Power Density |
|      |       | 1     | 0.0-5.6m/s | 0-200W/m2     |
|      |       | 2     | 5.6-6.4m/s | 200-300W/m2   |
| 0    |       | 3     | 6.4-7.0m/s | 300-400W/m2   |
|      |       | 4     | 7.0-7.5m/s | 400-500W/m2   |
|      |       | 5     | 7.5-8.0m/s | 500-600W/m2   |
|      |       | 6     | 8.0-8.8m/s | 500-800W/m2   |
|      |       | 7     | >8.8m/s    | >800W/m2      |



#### **Estimated Asian Wind Energy Resources**











#### **The NATURALHY approach**



Prepared by O. Florisson Gasunie

# Hydrogen's principal value

- NOT fuel cell cars
- Gather, transmit, store:
  - Large-scale, diverse, stranded renewables
  - FIRM time-varying-output renewables
    - Pipeline transmission, storage
    - Geologic storage
- Benign, if from renewables
- Global opportunity
- Hydrogen "sector", not "economy"
  - Transportation fuel: ground, air
  - DG electricity, CHP, retail value



"We know how to pipeline hydrogen" Air Products ~ 10,000 miles of GH2 pipeline, worldwide

## Air Products H<sub>2</sub>/CO Pipeline - Texas Gulf Coast



## Air Products H<sub>2</sub> Pipeline Baton Rouge/New Orleans, Louisiana



## **Rotterdam Pipeline System**



abc

# Air Products Company

#### REFINERY ACTIVITY LOS ANGELES BASIN, CALIFORNIA



### Hydrogen Embrittlement (HE) of Pipeline Steel



# Industrial H<sub>2</sub> Pipelines

- 3,000 km worldwide
- Industrial corridors; on-site
- 30% SMYS typical \*
- Constant pressure; low cyclic fatigue
- Low-alloy, low-strength steel
- Re-purposed oil pipelines

\* Specified Minimum Yield Strength

# **Line Pipe Material Options**

- Control Hydrogen Embrittlement (HE)
- Minimize energy-distance cost (kg-km)
  - "Sour service" X65 steel
  - HTUFF microstructure by Nippon Steel
  - CRLP by TransCanada and NCF
  - New ?

## Composite Reinforced Line Pipe (CRLP) TransCanada Pipelines & NCF Industries





#### Composite – Reinforced Line Pipe (CRLP) 3,400 psi, .75" X70 steel plus .75" composite

NCF Industries and TransCanada Pipelines ASME International Pipeline Conference and Exposition, Calgary, AB, Canada, October 02.



Composite Reinforced Line Pipe (CRLP)

42" diameter 3,400 psi .75" X70 steel .75" composite

NCF Industries and TransCanada Pipelines

ASME International Pipeline Conference and Exposition, Calgary, AB, Canada, October 02.



CRLP™ is a trademark of NCF Industries, Inc.

CRLP™ is manufactured under license from NCF Industries, Inc. U.S. and Foreign patents have been issued and are pending.



#### Wrapper, composite splice

CRLP<sup>™</sup> is a trademark of NCF Industries, Inc. CRLP<sup>™</sup> is manufactured under license from NCF Industries, Inc. U.S. and Foreign patents have been issued and are pending.

# Hydrogen's principal value

- NOT fuel cell cars
- Gather, transmit, store:
  - Large-scale, diverse, stranded renewables
  - FIRM time-varying-output renewables
    - Pipeline transmission, storage
    - Geologic storage
- Benign, if from renewables
- Global opportunity
- Hydrogen "sector", not "economy"
  - Transportation fuel: ground, air
  - DG electricity, CHP, retail value

#### Denmark: Middelgrunden, 13 x 1500 kW = 20 MW



# Hydro

### Hoover Dam



## **Geothermal Resources**

Photobiological Rhodobacter sphaeroides

## Algae: Chlamydomonas reinhardtii

Photo: Tasios Melis, PhD, UC Berkeley, USA



## Concentrated Solar Power (CSP) Thermal, Photovoltaic



# Photovoltaic ( PV )

#### Example: Vision of a bright future

The Silk Road Genesis Project\* \*proposed by Sanyo



Vision of solar farms in China along the historic silk road to cover <sup>1</sup>/<sub>3</sub> of China's energy demand in 2030



© ABB Ltd - Page 10 IEEE July 2001







Pilot-scale Hydrogen Pipeline System: Renewables

• Diverse

- Dispersed, diffuse
- Large-scale
- Stranded
  - Remote
  - No transmission



International Renewable Hydrogen Transmission Demonstration Facility (IRHTDF)

Pilot plant

Global opportunity: IPHE project

# IRHTDF

- Pilot plant: Every new industrial process
- Renewables-hydrogen system
  - Generation
  - Conversion
  - Collection
  - Transmission
  - Storage
  - Distribution, end users
  - Synergy: O<sub>2</sub>, seasonal

## "Hydrogen Transmission Scenario" Collection Topology Options: Electrolyzer and Rectifier Location



# Norsk Hydro Electrolyzers 2 MW each



Norsk Hydro electrolyzer, KOH type 560 kW input, 130 Nm3 / hour at 450 psi (30 bar)





## Great Plains Windplant, Pipeline Hourly Output for Typical Week

Hourly Hydrogen Pipeline Input and Output









Renewable-source GH2 geologic storage potential. Candidate formations for manmade, solution-mined, salt caverns



Geologic Salt: "Domal", "Bedded"



"Dome" salt deposits are thicker and more homogeneous than "bedded" From: Charles W. Forsberg, ORNL, 17th NHA Conference, 12-16 Mar 06

## Hydrogen Can Be Stored Underground At Low Costs



#### Natural Gas Stored Underground



UT-BATTELLE





#### Hydrogen, Fuel Cell 25 Feb 05, Torrance, CA



## Sadi Carnot 1796 - 1832

### Thermodynamics:

Heat engines; Efficiency limits



Sir William Grove 1839

## Electrochemical Engine

demonstrates fuel cell:

H2 to electricity, with catalyst



Hydrogen, Fuel Cell 25 Feb 05, Torrance, CA



Final

"PM" fuel cell (Poor Man's)



#### Hydrogen-fueled ICE by Electric Transportation Engineering Corp.

17<sup>th</sup> National Hydrogen Association Conference, March 06, Long Beach









ISE H2-fueled ICE Hybrid, V10 April 05, NHA, Washington DC

