Compressorless Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

> 23<sup>rd</sup> World Gas Conference, Amsterdam, 5-9 June 06

Treasure occas

Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell

# When we realize these as emergencies:

- Global Warming, Climate Change
- Energy Security and Cost
- Peak Oil and Natural Gas

#### We must quickly invest in:

- Energy conservation, efficiency
- Large, new energy supplies:
  - CO<sub>2</sub>-emissions-free
  - Indigenous
  - Both Distributed, Centralized

# Shortest path to benign, secure, abundant energy ?

- Renewables
  - Diverse
  - Diffuse
  - Dispersed
- Centralized:
  - large, rich; lower cost than distributed ?
  - but stranded (no transmission)
- Gaseous hydrogen (GH2) pipelines
  - Conversion, gathering
  - Transmission
  - Storage
  - Distribution
- Geologic storage "firms"
- Pilot plant needed:
  - every major new industrial process
  - IRHTDF



Great Plains Wind: Huge, Stranded Total USA energy: 100 quads = 10,000 TWh ATLANTIC OCCUP • Big Market: Hydrogen Fuel, not Grid Electricity Accelerate Conversion from Fossil

DEFAS







# Why Hydrogen ?

- Bring diverse, stranded, large-scale, renewables to distant markets
- Firm time-varying-output renewables
  - seconds, seasons
  - energy storage
    - Pipelines
    - Geologic: salt caverns, other

#### **Exporting From 12 Windiest Great Plains States**

Number of GH2 pipelines or HVDC electric lines necessary to export total wind resource Wind energy source: PNL-7789, 1991 \* at 500 miles average length

| State        | AEP,<br>TWh | Wind<br>Gen<br>MW<br>(nameplate)<br>(40% CF) | 6 GW<br>36″ GH2<br>export<br>pipelines | \$ Billion<br>Total<br>Capital<br>Cost * | 3 GW<br>export<br>HVDC<br>lines | \$ Billion<br>Total<br>Capital<br>Cost * |
|--------------|-------------|----------------------------------------------|----------------------------------------|------------------------------------------|---------------------------------|------------------------------------------|
| North Dakota | 1,210       | 345,320                                      | 50                                     | 50                                       | 100                             | 60                                       |
| Texas        | 1,190       | 339,612                                      | 48                                     | 48                                       | 100                             | 60                                       |
| Kansas       | 1,070       | 305,365                                      | 43                                     | 43                                       | 100                             | 60                                       |
| South Dakota | 1,030       | 293,950                                      | 41                                     | 41                                       | 100                             | 60                                       |
| Montana      | 1,020       | 291,096                                      | 41                                     | 41                                       | 90                              | 54                                       |
| Nebraska     | 868         | 247,717                                      | 35                                     | 35                                       | 80                              | 48                                       |
| Wyoming      | 747         | 213,185                                      | 30                                     | 30                                       | 70                              | 42                                       |
| Oklahoma     | 725         | 206,906                                      | 29                                     | 29                                       | 60                              | 36                                       |
| Minnesota    | 657         | 187,500                                      | 26                                     | 26                                       | 60                              | 36                                       |
| lowa         | 551         | 157,249                                      | 22                                     | 22                                       | 50                              | 30                                       |
| Colorado     | 481         | 137,272                                      | 19                                     | 19                                       | 40                              | 24                                       |
| New Mexico   | 435         | 124,144                                      | 17                                     | 17                                       | 40                              | 24                                       |
| TOTALS       | 9,984       | 2,849,316                                    | 401                                    | \$ 401                                   | 890                             | \$ 534                                   |



Left: 3,000 MW HVDC (Pacific DC Intertie, PDCI)

Right: HVAC

#### High Voltage Direct Current Transmission



North Dakota wind needs 115 new lines at 3,000 MW each

Twelve Plains states wind needs 890 new lines at 3,000 MW each

> *SIEMENS HVDC line +/- 500 kv*

### "Hydrogen Transmission Scenario" Collection Topology Options: Electrolyzer and Rectifier Location



# Norsk Hydro Electrolyzers 2 MW each



Norsk Hydro electrolyzer, KOH type 560 kW input, 130 Nm3 / hour at 450 psi (30 bar)



### 20", 36" GH2 Pipeline Capacity 1,500 psi IN / 500 psi OUT



# Total Installed Capital Cost 1,000 mile pipeline, \$US million

| Windplant size  | 1,000 MW | 2,000 MW   |  |
|-----------------|----------|------------|--|
| Wind generators | \$ 1,000 | \$ 2,000   |  |
| Electrolyzers   | 500      | 1,000      |  |
| Pipeline, 20"   | 930      | <u>930</u> |  |
| TOTAL           | \$ 2,430 | \$ 3,930   |  |









### Great Plains Windplant, Pipeline Hourly Output for Typical Week

Hourly Hydrogen Pipeline Input and Output



From: Charles W. Forsberg, ORNL, 17th NHA Conference, 12-16 Mar 06

### Hydrogen Can Be Stored Underground At Low Costs



#### Natural Gas Stored Underground



UT-BATTELLE

#### Working Gas in Underground Storage Compared with 5-Year Range



Total USA Natural Gas Underground Storage

Source: USDOE, EIA http://tonto.eia.doe.gov/oog/info/ngs/ngs.html



Renewable-source GH2 geologic storage potential. Candidate formations for manmade, solution-mined, salt caverns



Geologic Salt: "Domal", "Bedded"



"Dome" salt deposits are thicker and more homogeneous than "bedded"

### **ChevronPhilips GH2 Storage Cavern**

- Near Freeport, TX
- Solution-mined
- Estimated capital cost '05 ~ \$5 M
- 20 years old
- 2,200 psi design -- 2,000 psi operating
- Cavern roof 2,800 ft below surface
- 160 ft diam x 1,000 ft high
  - 580,000 m<sup>3</sup>
  - 6.4 million ft<sup>3</sup>

# Total Installed Capital Cost 1,000 mile pipeline, \$US million

| Windplant size  | 1,000 MW | 2,000 MW   |  |
|-----------------|----------|------------|--|
| Wind generators | \$ 1,000 | \$ 2,000   |  |
| Electrolyzers   | 500      | 1,000      |  |
| Pipeline, 20"   | 930      | <u>930</u> |  |
| TOTAL           | \$ 2,430 | \$ 3,930   |  |

### Total Installed Capital Cost 1,000 mile Pipeline "Firming" GH2 cavern storage

| Windplant size       | 1,000 MW    | 2,000 MW  |
|----------------------|-------------|-----------|
|                      | [million]   | [million] |
| Wind generators      | \$ 1,000    | \$ 2,000  |
| Electrolyzers        | 500         | 1,000     |
| Pipeline             | 930         | 930       |
| # storage caverns    | [4]         | [8]       |
| Caverns @ \$5M ea    | 20          | 40        |
| Cushion gas @ \$5M e | a <u>20</u> | 40        |
| TOTAL                | \$ 2,470    | \$ 4,010  |

Cavern storage: 1.6% total capital cost

*"Firming" GH2 Cavern Storage for ALL Great Plains Wind* 

# ~ 12,000 caverns Excavate: \$5 M each \$60 B Cushion gas: \$5 M each \$60 B

Total

\$120 B

#### Adds VALUE: strategic, market





International Renewable Hydrogen Transmission Demonstration Facility (IRHTDF)

Pilot plant

Global opportunity: IPHE project

### **IRHTDF** startup

- \$150K "champion" funding: AASI
- Coalition of interest
  - Renewables sources: wind, CSP, biomass
  - Automakers
  - USDOE, Labs
  - Industry: GE, APCI, BP, Shell, automakers
  - Great Plains states: MN, UMHI
  - Japan, NAGPF
  - Environ, trade, policy groups
- Revise concept
- Econ + tech
  - Feasibility studies;
  - Catalog R+D to precede it
- Preliminary design
- IPHE project proposal (via ILC): sponsors, site

#### **The NATURALHY approach**



Prepared by O. Florisson Gasunie

# When we realize these as emergencies:

- Global Warming, Climate Change
- Energy Security and Cost
- Peak Oil and Natural Gas

#### We must quickly invest in:

- Energy conservation, efficiency
- Large, new energy supplies:
  - CO<sub>2</sub>-emissions-free
  - Indigenous
  - Both Distributed, Centralized

### EIA estimated 2025 energy use



# Estimated 2050 energy use (H<sub>2</sub> fleet using wind electrolysis)



# Estimated 2050 energy use (H<sub>2</sub> fleet using nuclear thermochemical)



"There's a better way to do it... find it"



International Renewable Hydrogen Transmission Demonstration Facility (IRHTDF)

Pilot plant

Global opportunity: IPHE project

# IRHTDF

- Pilot plant: Every new industrial process
- Renewables-hydrogen system
  - Generation
  - Conversion
  - Collection
  - Transmission
  - Storage
  - Distribution, end users
  - Synergy: O2, seasonal

Compressorless Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

> 23<sup>rd</sup> World Gas Conference, Amsterdam, 5-9 June 06

Treasure occas

Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell



"We know how to pipeline hydrogen" Air Products ~ 10,000 miles of GH2 pipeline, worldwide

#### Air Products H<sub>2</sub>/CO Pipeline - Texas Gulf Coast



#### Air Products H<sub>2</sub> Pipeline Baton Rouge/New Orleans, Louisiana



# **Rotterdam Pipeline System**



abc

# Air Products Company

#### REFINERY ACTIVITY LOS ANGELES BASIN, CALIFORNIA



#### Hydrogen Embrittlement (HE) of Pipeline Steel



# **Industrial H2 Pipelines**

- 3,000 km worldwide
- Industrial corridors; on-site
- 30% SMYS typical \*
- Constant pressure; low fatigue
- Low-alloy, low-strength steel
- Re-purposed oil pipelines

\* Specified Minimum Yield Strength

# **Line Pipe Material Options**

- Control Hydrogen Embrittlement (HE)
- Minimize energy-distance cost (kg-km)
- "Sour service" X65 steel
- HTUFF by Nippon Steel: microstructure
- CRLP by TransCanada and NCF
- New ?

## Composite Reinforced Line Pipe (CRLP) TransCanada Pipelines & NCF Industries





#### Composite – Reinforced Line Pipe (CRLP) 3,400 psi, .75" X70 steel plus .75" composite

NCF Industries and TransCanada Pipelines ASME International Pipeline Conference and Exposition, Calgary, AB, Canada, October 02.



Composite Reinforced Line Pipe (CRLP)

42" diameter 3,400 psi .75" X70 steel .75" composite

NCF Industries and TransCanada Pipelines

ASME International Pipeline Conference and Exposition, Calgary, AB, Canada, October 02.



CRLP™ is a trademark of NCF Industries, Inc.

CRLP™ is manufactured under license from NCF Industries, Inc. U.S. and Foreign patents have been issued and are pending.

CRLP™ is a trademark of NCF Industries, Inc. CRLP™ is manufactured under license from NCF Industries, Inc. U.S. and Foreign patents have been issued and are pending.



CRLP<sup>™</sup> is a trademark of NCF Industries, Inc. CRLP<sup>™</sup> is manufactured under license from NCF Industries, Inc. U.S. and Foreign patents have been issued and are pending.



#### Wrapper, composite splice

CRLP<sup>™</sup> is a trademark of NCF Industries, Inc. CRLP<sup>™</sup> is manufactured under license from NCF Industries, Inc. U.S. and Foreign patents have been issued and are pending.

Compressorless Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

> 23<sup>rd</sup> World Gas Conference, Amsterdam, 5-9 June 06

Treasure occas

Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell