
Future Prospective of DME

Hubert de Mestier du Bourg

23 rd World Gas Conference Amsterdam 5 - 9 June 2006

DME is another option of GTL (Gas To Liquid)

Characteristics of DME

DME = CH₃-O-CH₃ di-methyl-ether

A handling as easy as LPG
- boiling at - 25 ℃, liquid under 5.1 bars at 20 ℃

▲ calorific value / weight 60 % of LNG / gas volume 150% of LNG

- suitable for diesel engine fuel

- ▲ clean combustion no Smoke at all
 - can meet extremely stringent control of PM emission without filter for diesel engine cars (<0.013g/kwh in 2010, Japan)

Why TOTAL is interested in DME?

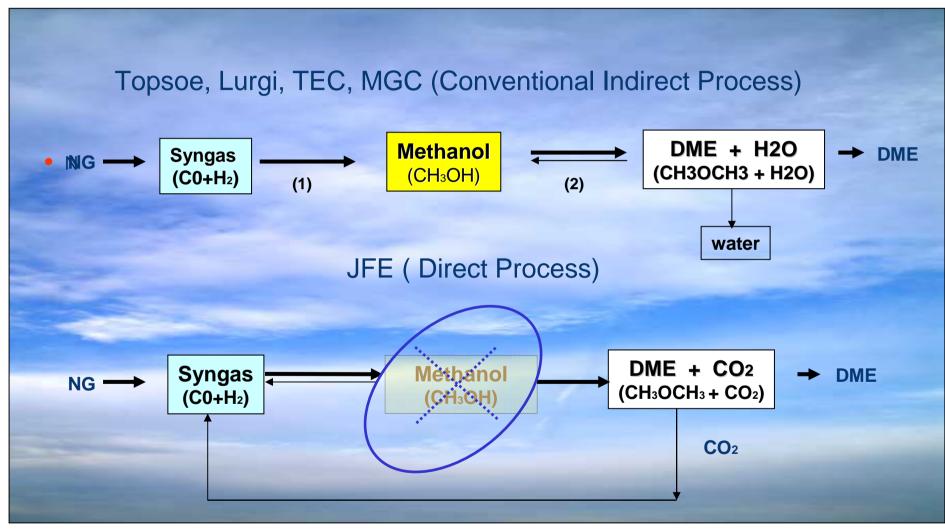
- ▲ An option to diversify and increase natural gas outlets,
- **▲** Economical for storage and transportation, especially where large investment for LNG is not economically justified,
- ▲ Future possibility as cleanest Auto-gas (diesel),
- ▲ Best thermal efficiency among all GTL processes, especially with direct synthesis solution.

TOTAL participation in a Japanese Consortium (JFE group) since 2001 for Direct DME Technology Development and Feasibility Study of a large scale DME production Project

Technical Challenges for DME Production as Fuel

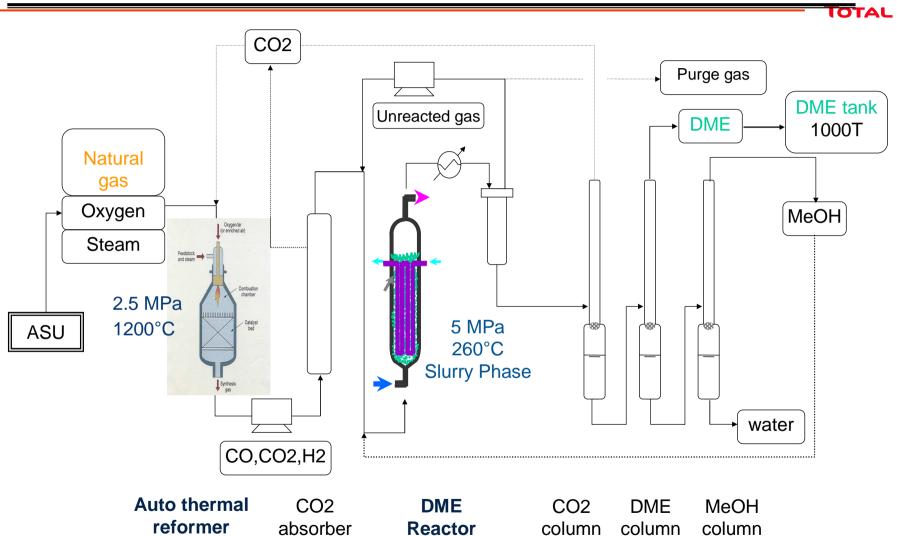
△ Existing DME plants are small, and sell DME in high price chemical market:

Shell/RWE, Germany 60,000 t/y Hamburg DME Co, Germany 10,000 t/y AKZO, Holland 10,000 t/v All of them use conventional DuPont, West Virginia, USA 15,000 t/y methanol dehydration process MGC, Sumitomo, Japan 10,000 t/v Australia 10,000 t/y **Taiwan** 15,000 t/v Luthianhua, China 110,000 t/y (s/u 1st Q, 2006) - for fuel Jiutai etc. China \sim 120,000 t/y? - for fuel from coal Ningxia Coal Group 210.000 t/v - for fuel from coal (s/u 2007)

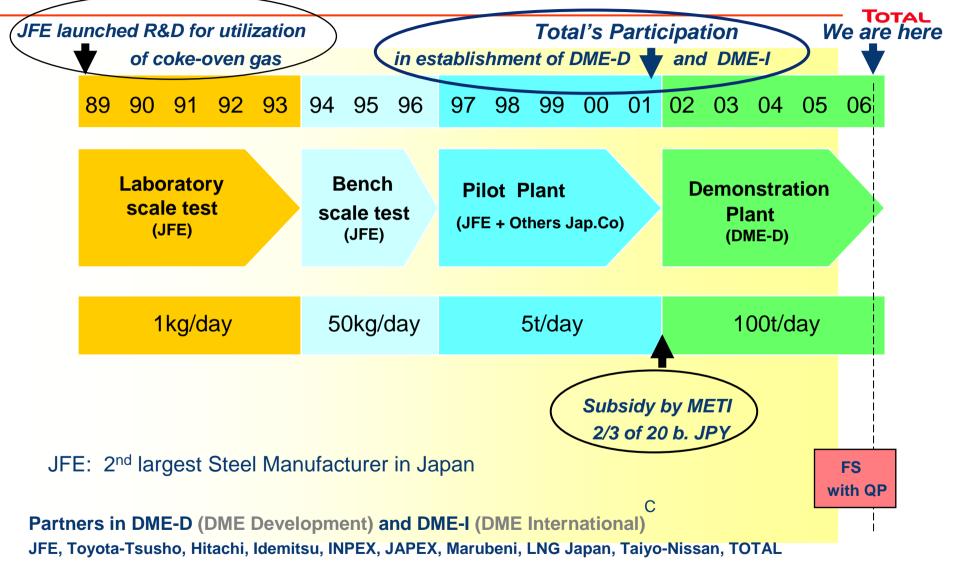

△ To be cost competitive in Fuel market, at least 1 ~ 2 million t/y single plant capacity is necessary.

Technical Challenges - Scale-up to 10 ~ 100 times capacity

- More economical process


Technical Challenge for more Economical Process

JFE Direct DME Process Flow Diagram



JFE Process Development and TOTAL Participation

JFE Direct Process - Technical Validation Program

	2003			2004			2005				2006					
	1st Q		3rd Q	4th Q	1st Q	2nd Q	3rd Q	4th Q	1st Q	2nd Q		4th Q	1st Q		3rd Q	4th Q
Pre-FEED																
Plant Construction																
Run-100																
Run-200																
Run-300																
Run-400/500																
Run-600																
Pre-FEED Review																
Value Engineering																
CAPEX Estimation																
																<u> </u>
FS with QP																

OBJECTIVE OF THE TEST RUNS

Run No.	Objective	Key test items	Duration (days)	DME produced (tons)
Run-100	Commissioning	Start-up/shut-down, operability etc.	43	1,240
Run-200	Performance data acquisition	ATR efficiency, CO2 effect on DME conversion, gas recycle ratio etc.	39	2,500
Run-300	Engineering data acquisition	Heat exchanger fouling rate, slurry reactor fluid dynamics, etc.	73	4,230
Run-400/500	Durability tests in a long steady state operation	Duration of equipment and catalyst	152	9,070
Run-600	Confirmation tests	ATR/Quencher Improved catalyst	40	2,500
		Total	347	19,540

100 t/d Demonstration Plant in Kushiro - Syngas Section

100 t/d Demonstration Plant In Kushiro – DME Synthesis and Purification Section

100 t/d Demonstration Plant in Kushiro – DME tank and Lorry

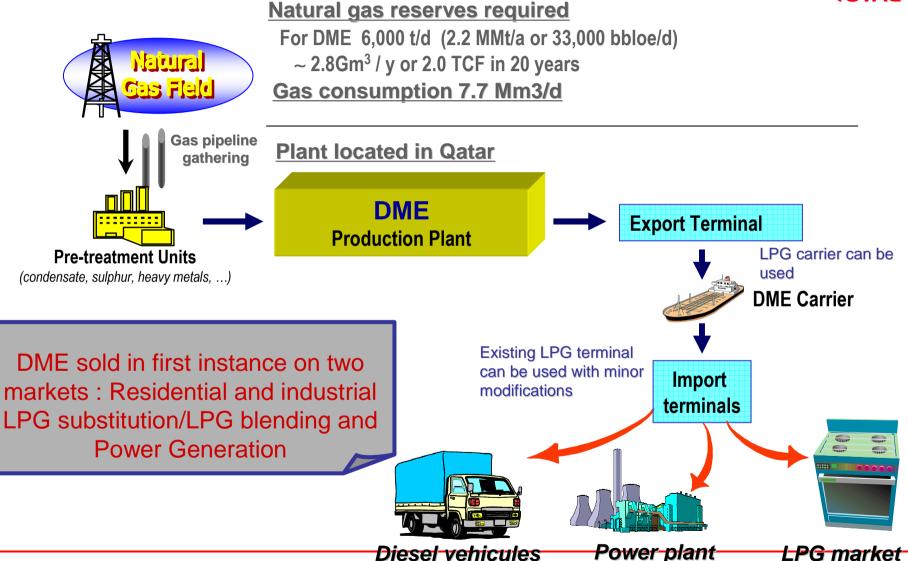
Fuel Grade DME Commercial Plant Projects around the world

Japan

3 big groups (JFE, Mitsubishi, Mitsui) are separately conducting FS of 1 ~ 2 MM t/y DME production in Middle East, Australia or South East Asia, and importing DME to Japan.

China

Liutianhua group started up 10,000 t/y DME plant in September 2003. The same group is constructing 110,000 t/y DME plant to be completed in 1st Q of 2006 in Sichuan Province.


Ningxia Coal Group plans to start-up 210,000 t/y DME from coal in 2007 Jiutai group plans to build 1 million t/y DME plant from coal in Mongolia

• Iran

Zagros Petrochemical is reported to construct 800,000 t/y DME plant in Bandar Assaluyeh. (European Chemical News - June/July,2004) although the current situation is not clear.

DME Chain

DME Markets

Fuel markets

- LPG market DME/LPG blend (up to 30%) appears promising
- Power generation market often competing with other fuels (LNG, coal, nuclear)
- Diesel market most promising, but might need more time to grow
- Fuel cell market depends on fuel cell development

Other potential markets

- △ Petrochemical feedstock: DME to Olefin (growing olefin market in Asia)
 - under development by Lurgi, UOP/Arkema (MTO), JGC, Idemitsu (DTO)
 - Idemitsu is interested in DTO development for their petrochemical plants
- A Refrigerant: Replacement of Fluoro-hydrocarbons for conservation of ozone layer
 - City of Moscow is actively testing
- Resin foaming agent: Replacement of toxic chemicals
 - Kaneka in Japan announced use of DME for polystyrene foaming from September 2005

Prototype DME Vehicles in Japan

Year 20			2002 ~ 2003							2004		
Photo-No		1	2	_	3	4)	(5)	6	7	8	9	
Displacement	CC	3600	8266	4600	4214	4214	7166	7961	6925	4777	4777	
Power	k W	88	168	129	80	80	138	129	201		90	
Govt Organization		_	MOLIT	MOLIT		JOGMEC		NEDO	MOLIT	ISUZU	JOGMEC	
Manufacturer	_	JFE	ISUZU	Nissan	AIST	AIST	COOP	HINO	NTSEL	ISUZU	ISUZU	
	①		2		(3)						

2001/ 2003

2004

7

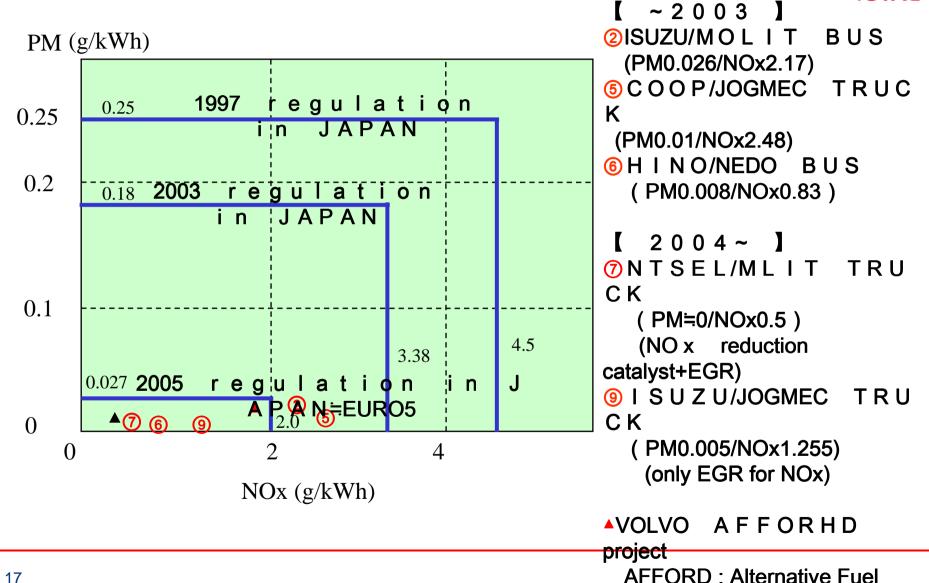
9

MOLIT: Ministry of Land, Infrastructure and Transport

JOGMEC: Japan Oil ,Gas and Metals National Corporation

NEDO: New Energy and Industrial Technology Development Organization

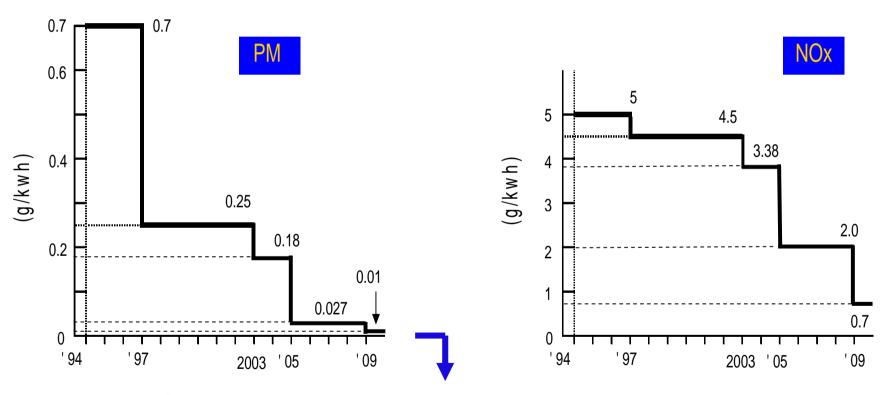
Nissan Diesel Motor Co


COOP: Co-op EcoVehicle Development Co, Ltd

AIST: National Institute of Advanced Industrial Science and Technology

NTSEL: National Traffic Safety and Environment Laboratory.

Emissions of Proto-type DME vehicles



FOR

Regulation on Diesel Car Emission in Japan (>3.5 ton heavy duty cars)

Advisory Committee for the Minister of Environment proposed in February 2005 a very stringent emission control from 2009.

Only DME can meet this level without DPF