

WOC1

Methane Hydrates and Their Prospects for Gas Industry

Dr. Vladimir Yakushev VNIIGAZ, Gazprom, Russia

23rd World Gas Conference Amsterdam, 5-9 June, 2006

Global natural gas production cost trend (IGU WOC1, 2003)

Production cost can double by year 2030 due to resource base structure change

Natural gas consumption and sources of gas in the USA

Why Study Methane Hydrates?

What are gas hydrates?

Main properties of gas hydrates, important for natural gas industry:

- One volume of methane gas hydrate contains up to 164 volumes of methane and 0,8 m³ of clear water.
- Gas hydrate self-preservation phenomenon allows to store gas in hydrates at atmospheric pressure and ambient (-5 - -10°C) temperature.
- Hydrates accumulate great quantities of natural gas in shallow depth in the Earth, cementing sediments.
- CH₄ hydrate density is lower, but CO₂ hydrate density is higher than sea water density.
- Submarine hydrates create environment for photosynthesis-less life.

Formation of self-preserved methane hydrate particle (temperature -5 ÷ -15°C)

Methane hydrate stability zone (HSZ) and hydrate metastability zone (HMSZ)

Hydrates in sediments

Offshore drill core

Subpermafrost hydrate-containing drill core

Hydrate accumulation on sea floor

Subbotom hydrate-containing sediment

Locations of known gas hydrate occurrences in the world

Natural gas resources in the Earth crust down to depth 4,5 km. (Combined data from VNIGRI (Russia) and USGS (USA)

Exploration and production of gas from hydrates (Mackenzie Delta project, Canada)

Explored gas hydrate fields

Resource assessment

Gas hydrate accumulation	Area of gas hydrate accumulation (km ²)	Volume of gas within hydrate per square km (x 10 ⁶ m ³)	Total volume of gas within the hydrates of each gas hydrate accumulation (x 10 ⁶ m ³)
Mallik	10.27 41.08	4835 1469	49 656 <u>60 347</u> Total 110 003
lvik C-52	46.61	921	42 928
North Ivik	15.01 9.48	1187 531	17 817 <u>5034</u> Total 22 851
Taglu	26.07 38.71	351 58	9151 <u>2245</u> Total 11 396

Probable initial production cost: 25-30 USD/1000 SCM

Three methods of gas production from hydrates

Geohazards

Methane bubbling form shallow permafrost hydrates around gas production well in West Siberia (Russia) Gas fire from permafrost hydrates when drilling monitoring well

Geohazards

Methane release from submarine hydrates can result to ship sinking and low-flying plane explosion.

Submarine landslide can destroy offshore production facilities

Unstable Hydrate Decomposition (Petroleum Engineer, March 1998)

Gas hydrates and greenhouse gases emissions

Methane release from hydrates to atmosphere if sea level reduction

Sea-level rise causes relatively warm ocean water to cover cold Arctic strata. The resulting breakdown of stable gas hydrates within the sediment releases gas into the atmosphere.

Methane release from hydrates to atmosphere if sea level rise

Gas hydrates – medium for new forms of life

"Ice worm" (portrait)

Submarine colony of "Ice worms" in hydrate accumulation (Mexico Gulf)

Gas Hydrate Technologies for Natural Gas Industry

Gas hydrate technologies could be applied for:

- Remote and deep-water offshore natural gas fields development.
- Continental small and medium gas fields development.
- Marine transport and trade of natural gas (competitor to LNG)
- Natural gas and drinking water supply to remote consumers
- Peak sheaving natural gas storage close to large consumers
- Seasonal natural gas storage in areas with irregular consumption

Concept of natural gas production and CO₂ sequestration using gas hydrate technologies

Decomposition of natural gas hydrates, gas injection to shore gas treatment unit with simultaneous injection of $\rm CO_2$ to the carrier and $\rm CO_2$ conversion to hydrate

Gas hydrate technologies: Gas transportation

CAPEX for different methods of natural gas transportation (data of Norwegian University of Science and Technology, 2002)*

Image of marine hydrate carrier of Mitsui Corp. (Japan)

Gas hydrate technologies: Gas storage. (project of natural gas storage, Russia)

CONCLUSIONS

- Total number of resources is decreasing (down to 2500 trln.m³), but commercial prospects of gas production from gas hydrate deposits are growing (production cost varies from 25 to 260 USD/1000 m³).
- Discovery of new phenomenon gas hydrate self-preservation, explains hydrate existence in shallow permafrost and opens new commercial prospects for storage and transportation of methane in hydrate form at atmospheric pressure (25% less in CAPEX then equal LNG).
- Gas hydrates are of considerable geohazard when drilling and production of oil and gas in permafrost regions.
- Natural methane hydrates could be great source of methane for global worming is sea level change, but there are no visible reasons for this change.
- Methane hydrates could be of great geohazard for deep water oil and gas production due to submarine landslides along contact between hydrate-containing and underhydrate sediments.
- New technologic concepts of commercial natural gas storage and transport in hydrate form open new prospects for deep water natural gas production and CO₂ sequestration (natural gas production in remote deep-water gas fields is estimated as 40-45 USD/1000 m³)
- Construction of gas hydrate storages can solve the problem of irregular natural gas supply to remote small consumers.

International activity on gas hydrate R&D

National gas hydrate programs acting since:

- 1995 Japan
- 1996 India
- 1999 USA (Second Program)
- 2000 Germany
- 2001 S.Korea
- 2001 China

ACKNOWLEDGEMENT

- A part of this presentation has been prepared with support from European Commission, INTAS Project 03-51-4259. The author is also thankful for Dr.Art Johnson from Hydrate Energy International, USA and
- Mr. Suzuki and Mr. Tsuji from Japan Oil, Gas and Metals National Corporation for providing by useful information about gas hydrate R&D.

Scientific-Research Institute of Natural Gases and Gas Technologies - VNIIGAZ

internet: www.vniigaz.ru e-mail: vniigaz@vniigaz.gazprom.ru phone: (+7 495) 355-92-06