

TEG Regeneration with oxidizer for small capacity dehydration unit

Philippe Bertiaux GTRgaz - Engineering Center Michel Vey Gaz de France - Major Infrastuctures Division

Today Process

- Water is removed through dehydration units during withdrawal
 - GDF use absorption unit with TEG as absorption media
 - TEG is in a closed loop and is regenated by boiling through a distillation column
 - Reneration units are shared with dehydration units through wet and dry TEG tanks
 - Three big defects for regeneration units
 - Flare
 - Liquid effluent
 - Flame tube in TEG

Classic regeneration

Goals

Re-vamping of above facilities of UGS

• Several TEG regeneration are obsolete

Use of a regeneration process that has a lower environmental impact and a better efficiency

TEG Regeneration with Oxydizer

- No flare then much less visual impact
- No more production of liquid effluent
- TEG heated by fumes
- Effluent and service (flash and stripping) gases used as fuel

Regeneration with oxydizer

Development for unit of small capacity 1/2

Small capacity

- Dehydration unit remotly located
- Small UGS with flow of max 100 000 m3(n)/h

Modification

- No need for sharing regeneration
- Regeneration unit indoor

Development for unit of small capacity 2/2

Results

- Indoor then better control of potential failures (gas leak and fire)
- Better design for remote location or unmanned plants

- Project for convertion of gas field Trois-Fontaines into UGS in co-operation with our subsidary PEG
- Potential development for obsolete regeneration on remote platform of salt cavern

