

Condition-oriented maintenance of technical systems in Underground Gas Storage Facilities at VNG Verbundnetz Gas AG

Referent: Dipl.-Ing. Bernhard Ott, maintenance Management

Verbundnetz Gas AG

VNG - Verbundnetz Gas Aktiengesellschaft

										Stavanger Stockholm
	1997	1998	1999	2000	2001	2002	2003	2004	2005	Sleipner Ekofisk Tyra
Total gas sendout (billion kWh)	148.5	150.6	150.7	152.2	154.4	156.5	160.2	161.6	163.1	Emden Berlin West
Share in German gas consumption (%)	16	16	16	16	16	16	16	16	16	Zeebrugge Brussele Vitzeroda Prague Vel Kapusa
Turnover (billion €)	1.93	1.82	1.69	2.60	3.10	2.89	3.32	3.32	3.81	Paris Bern Munich Bratislava Budap
Employees	1,143	1,13 <mark>2</mark>	1,057	910	743	689	682	669	651	Lyon La Spezia
Net income for the year (million €)	15	46	34	55	96	105	124	123	94	Fos-sur-Mer

VNG trading and transportation volumes

billion kWh 163.1 161.6 160.2 156.5 154.4 152.2 150.6 150.7 148.5 71.0 55.4 49.7 47.8 32.1 22.5 15.0 8.8 7.7 1998 1997 1999 2000 2001 2002 2003 2004 2005 gas trading gas transportation

- Length of pipelines: 7,279 km
- Underground gas storages:
 6 (at overall 5 sites)
- Total work gas capacity:
 2.3 billion m³
- Compressor stations:
 2 (+ 4 compressor units UGS)
- Total compression capacity: 77.8 MW (8 piston compressors 7 turbo compressors)
- Delivery stations / links: 8 ->
- Metering and pressure regulating stations: 36
- Assets of cathodic corrosion
 protection: 727

Verbundnetz

Gas AG

Verbundnetz Gas AG

Demands for maintenance process at VNG

- A high level of availability
- High safety standard of providing
- Adherence to law
- Low cost rate for operational procedure and
- Low cost level for maintenance process

International standard maintenance methods

- Failure-based maintenance (whenever a failure / damage occurs)
- Planned preventive maintenance (Predetermined / periodical / preventive maintenance at constant intervals to suit specific criteria)
- Condition-based maintenance (periodical determination of wear, maintenance at a time which suits production planning)

Stand by equipment and capacity reserves

Analysis of operational procedures at the recent years

- Analysis of capacity of plant systems
- The frequency of critical loads
- Equipment permanent works at a low load level

Classification of ZEDAS system in terms of NAMUR recommendation NE 91

erdgas

8

Aims of introduction management software ZEDAS

- Detected defects early before system has suffered major damage
- Practice condition-based planning for inspection, upkeep and repair
- Optimize operation through direct rating factor / efficiency / energy consumption and
- Statistically follow up on events / damage to individual plant components (units, apparatus, instruments, equipment etc.) and
- Analyze failure frequency

Plant components

- Compressors
- Gas drying / gas purification systems
- Pressure reduction systems and
- Gas storage caverns / wells

Verbundnetz Gas AG

Interpretation

- In result of using the IT-control-system, VNG get a lot of information about:
 - specific plant cost
 - equipment running time
 - increasing rate of failure and
 - cause of failure

Data tracks per technical units of UGS Bernburg

Technical units	Compressor	Gas drying system	Pressure reduction system	Caverns
Total	143	33	160	133

Data tracks of process factors at UGS Bernburg

Process factor	Retention time, days	Scanning intervals, seconds.
analogue data:	temperature93	600 (10 minutes)
analogue data:	pressure etc.93	(10 minutes)
binary data	732	2,400 (40 minutes)
cavern data	732	7,200 (120 minutes = 2 hours)

Project steps include:

- Developing and implementing a data flow / security concept for coupling commercial and production networks
- Selecting data tracks for units, drawing up maintenance plans, setting intervals and
- Analyzing load-descriptive parameters with a first definition of links and message / alarm values (rules)

Advantages of ZEDAS (I)

- Every plant obtains a special strategy of maintenance
- Older flow of work is completely changed
- Job orders will be reduced
- A better documentation of failure and technicalexamination for a lot of equipment
- The examination of device-function could be reduced up to 30 %

Advantages of ZEDAS (II)

- Better operating safety / plant reliability
- Lower maintenance costs (efficient working)
- Better fail safety of technical systems (minimal downtime / preventive diagnosis / more effective troubleshooting)
- Optimization of cost-benefit ratios for monitoring / diagnosing systems and
- Support to prove conformance to safety rules

The following approach to projects is recommended:

- 1) Develop / implement a concept for organization, data flow and data security, particularly when coupling commercial and process control networks
- 2) Select process information to be imported online (data tracks from PLS / SPS) for units chosen in keeping with risk assessment includes drawing up maintenance schedules and observing time limits
- 3) Analyze load-descriptive parameters, give a first definition of links and of message / alarm values (alarm rules)
- 4) Gradually optimize maintenance / inspection intervals making allowance for (failure) frequency and damage classes (see also VGB leaflet M 130 and DVGW worksheets G 495 and W 400/3)

