

Demonstration of the LRC Storage Skallen – Sweden

Jan Johansson – NaturgasteknikAB Lars Mansson – E.ON Gas Sweden Pierre Marion - Gaz de France

Schematic principle

Above ground facility Ground surface Vertical concreted shaft with pipes Cavern depth 115 m Top tunnel Access tunnel Tunnel Upper tunnel entrance Cavern D =35 m H= 52 m Lower tunnel

Storage performance

- Gas Pressure
- Total Gas Volume
- Working Gas Volume
- Max withdrawal flow
- Withdrawal Time
- Max Injection flow
- Injection Time

200 bar $10x10^{6} m^{3}(n)$ $8.5x10^{6} m^{3}(n)$ $40\ 000\ m^{3}(n)/h$ $10\ days$ $15\ 000\ m^{3}(n)/h$ $20\ days$

Cavern Wall Design

Demonstration Program

- Hydraulic pressure tests
 - Mechanical integrity test of the cavern at 220 bar
 - Mechanical behaviour test under cyclic loads (25 cycles 30-200 bar)
 - Constant pressure test after cyclic test (at 200 bar)
 - Gas leakage test
- Preparation for gas operation
 - Dewatering procedure (replacing water with gas)
 - Gas drying procedure
- Gas cycle tests

Hydraulic pressure test

Gas leakage test

Rock mass deformation

Tangential strain

Strain in steel lining

Conclusions

- Behaviour of rock mass and cavern wall are as expected:
 - the deformation level is lower than expected,
 - the strain level is well below the design values,
 - the design assumptions have been confirmed with a margin.
 - the temperature variation in the cavern during gas operation has, as expected, a large influence on the deformation pattern.
- Steel lining is absolutely gas tight. Gas leak tests proved that the leak monitoring system is capable of detecting a small gas leak from the cavern in a very short time.
- The gas cycles demonstrated that the Demo Plant can fulfil the requirements regarding storage capacity and deliverability.
- It has been shown that the gas cooling/heating circulation system can control the temperature in the cavern, thereby increase the storage deliverability with several cycles possible per year