23. World Gas Conference, 5th. - 9th. June 2006, Amsterdam

The Pipeline Integrity Management System of VNG Verbundnetz Gas AG

Referent: Dr. Volker Busack, Operation / Technology

1. Introduction VNG

- VNG in the European gas transmission grid -

Verbundnetz

Gas AG

2

1. Introduction VNG

Technical infrastructure at VNG -

- Length of pipelines: 7,279 km
- Underground gas storages: 6 (at overall 5 sites)
- Total work gas capacity: 2.3 billion m³
- Compressor stations: 2 (+ 4 compressor units UGS)
- **Total compression capacity:** 77.8 MW (8 piston compressors 7 turbo compressors)
- Delivery stations / links: 8 -
- **Metering and pressure** regulating stations: 36
- **Cathodic corrosion protection** installations: 727

Verbundnetz

Gas AG

2. Changes in pipeline status- Pipeline quality curve -

Reserve in the bearing capacity Quality Q of a high-pressure gas pipeline Quality loss if maintained according to regulations Standard on completion max Q Remaining useful life Actual standard of a well-maintained pipeline min Q₁ (As defined by Rehabilitation operator) Minimum standard min Q_2 (absolute) Lack of quality on completion or maintenance t [yrs.] 0

4

3. Aims, elements and methods of PIMS - Aims and requirements -

Specific aims of PIMS at VNG - Verbundnetz Gas AG:

- Evaluation of results of inspection pigging by neuronal networks (FEM), incl. corrosion forecast with assessment program "COP" (Corrosion On Pipelines)
- Technical condition analysis of pipelines by probabilistic assessment criteria / parameters
- Evaluation of possible service life
- Identification of failures / weak spots with following prioritization of needed actions / measures
- Optimization and Processing of needed rehabilitation measures
- Data management and providing a pipeline information system

3. Aims, elements and methods of PIMS

- Pipeline failure probability, QRA and SRA -

erdgas

Verbundnetz

Gas AG

3. Aims, elements and methods of PIMS Verbundnetz - Risk triangle

3. Aims, elements and methods of PIMS- PIMS elements at VNG -

PIMS elements at VNG

erdgas

Verbundnetz

Gas AG

- Methods and techniques for pipeline assessment / inspection:
 - Pipeline Integrity Management System (PIMS)
 - Technical Condition Analysis (TCA)
 - \rightarrow specific expert systems
 - Intelligent / Inspection pigging
 - Program "KaRo" for corrosion assessment / forecasting
 - Program "FAD" for evaluation of old welding seams
 - Cathodic corrosion protection "CCP"

4. TCA and Inspection pigging - Technical condition analysis TCA -

Technical Condition Analysis for high-pressure gas pipelines

Non-piggable pipelines: 3,195 km

<u>TCA</u>

- Assess linear section (pipeline data, ambient conditions, etc.) and specific features (valves, fittings, special structures, etc.) acc. to probabilistic criteria (failure probability)
- Prioritize weak points

Piggable pipelines: 4,121 km

Inspection Pigs

- Assess wall thickness deterioration using Finite Element Method (FEM)
- For calculation use neural networks with KaRo (pipeline corrosion) program
- Estimate remaining service life by making corrosion forecast

Identify immediate steps, derive multi-stage plan for weak point rehabilitation

5. Content and results of TCA

- List of raw data – Selection of parameters -

Priority: must (1)

- 1 Year of construction
- 2 Culvert
- 3 Diameter
- 4 Casing pipe
- 5 Design pressure
- 6 Settling pressures
- 7 Coverage
- 8 Wall thickness

Priority: must (2)

- 1 As-built quality, ZfP-test
- 2 Operating pressure
- 3 Empirical values at pipeline, damage statistics
- 4 Above ground pipeline
- 5 Slope
- 6 Medium
- 7 Proximity seam of a secure connection
- 8 Insufficient distance from structure
- 9 Type of seam
- 10 Seam fracture on this pipeline
- 11 Hollow
- 12 Mining pressures
- 13 Temperature
- 14 Type of connection
- 15 Traffic route (rail, road)
- 16 Material

Priority: should

- 1 Pipeline construction details (Bends etc.)
- 2 Cathodic Corrosion Protection
- 3 Pigging data
- 4 Damages
- 5 Repairs

Priority: can

- 1 Coating
- 2 Groundwater
- 3 Ground utilization
- 4 Dynamic stresses
- 5 Soil aggressiveness
- 6 Electrical external voltage

Priority: Information

- 1 Manufacturer
- 2 Documentation

5. Content and results of TCA

- Example for pipeline assessment (I) -

No.	Cause	Cover [m]
1	Crossing with traffic route, no casing pipe	0.80
2	Crossing with traffic route, no casing pipe	0.80
3	Crossing with traffic route, no casing pipe	1.01
4	Insufficient cover	0.54
5	Structure erected over pipe	0.64
6	Crossing with traffic route, casing pipe	0.63
7	Insufficient cover	0.69
8	Insufficient cover	0.68
9	Insufficient cover	0.45
10	Insufficient cover	0.64
11	Insufficient distance from parallel traffic route	0.70
12	Crossing with traffic route, no casing pipe	0.81
13	Crossing with traffic route, casing pipe	0.58
14	Structure erected over pipe	0.83
15	Insufficient distance from parallel traffic route	0.80
16	Crossing with traffic route, casing pipe	0.80

Explanation of the marked locations HP gas pipeline, PN 25, DN 400 Year of construction 1969 Overal lenght 73,27

5. Content and results of TCA

- Example for pipeline assessment (II) -

Exemplary result for design pressure PN 25 bar

Metre of pipeline

6. Selected methods and tools

- 🗆 ×

- KaRo - Corrosion of pipelines -

KaRo - program for corrosion assessment

Evaluate large data quantities from inspection pigging:

- Assess / classify defective places
- Derive immediate steps

 (e.g. safeguarding program,
 pressure reduction)

Assess local defects (digging):

- Bearbeiter br. Herstellungsnaht: Spiral -Abstand zur nächsten Montagenaht 4,0 m Rohrparameter Verschwächungsparameter 3.00 Außendurchmesser [mm] Tiefe d [mm] 400.00 Länge Lx in Achsrichtung [mm] 200,00 Wanddicke [mm] 8.00 Breite Lu in Querrichtung [mm] 100,00 Nenndruck [bar] 55,00 Werkstoff St 52-3 -· extern Lage C intern Information Zulässiger Druck 92.21 Theoretischer Maximaldruck [bar] im verschwächten Bereich 2.96 vorh. Sicherheit gegen Bruch 55.00 bar 2,16 vorh. Sicherheit gegen Durchplastifizieren keine Maßnahme erforderlich Formular berechnen
- Determine defect parameters (wall thickness reductions) on site (length, width, depth)
- Recalculate operating pressure, identify repair method

KaRo Projekt 234-5-44

Beschreibung

Eingabe

Kennung

Datei Grenzwertbetrachtung Massendaten Extras Einstellungen Hilfe

234-5-44

6. Selected methods and tools

- Corrosion forecast -

Corrosion forecast

Aims:

- Determine remaining operation life for wall thickness deterioration
- Optimize repair time / method (avoiding supply interruption, e.g. by field coating, clock spring, collars, etc.)
- Plan repeat inspection pigs

Applications:

 Wall thickness deterioration requiring no immediate repair and for which the effectiveness of cathodic protection has not been proven

6. Selected methods and toolsFE Modelling of corrosion areas -

Verbundnetz Gas AG

Surface scan

FE result

7. Process steps of PIMS Verbundnetz Gas AG **Technical condition** analysis TCA Dynamic External assessment segmentation algorithms (i.e. risk) **Result analysis** Visualization KARO/ Data management for pipeline condition Proof KAROSAN documentation Pigging Expert data CCP data GIS data data Measure planning KARO / KAROSAN Rehabilitation Measure **Documentation feedback** and cost proceeding planning

8. Conclusions

- Using the TCA method since 1998 within the scope of PIMS
- up to now approx. 3,000 km of high-pressure pipelines assessed in detail and rehabilitation measures classified into priority stages 1 - 3 (defined levels)
- Results of rehabilitation processing in reference to realistic conditions optimally suitable for verifying
- Advantages: Planning reliability / safety
 - cost lowering / optimization
 - proof of reliability and technical integrity

