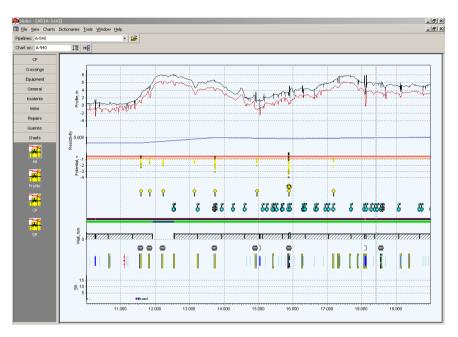


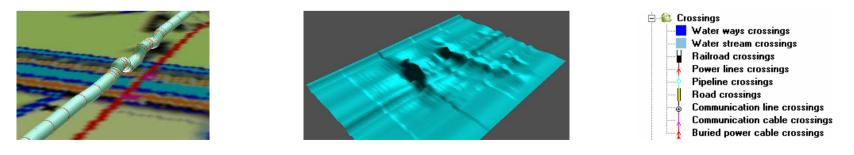
Amsterdam, June 6th 2006

A Direct Assessment Module for Pipeline Integrity Management at Gasunie

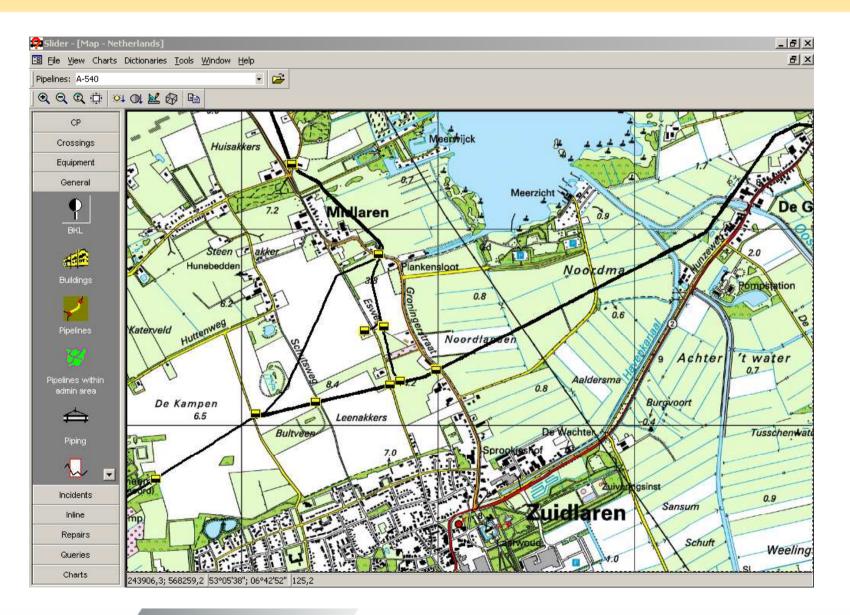
Menno van Os Piet van Mastrigt

23rd World Gas Conference Transmission, WOC 3 Safety; Incident Databases

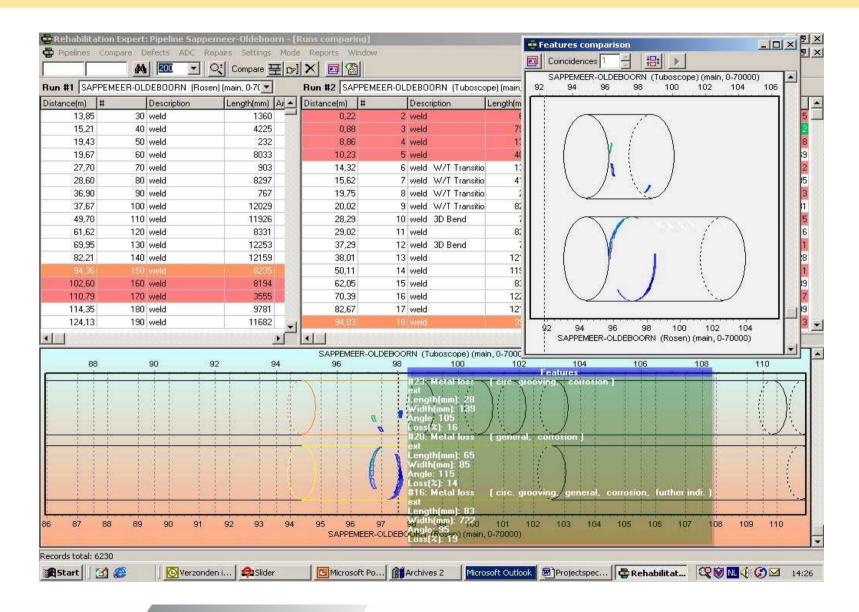

Overview


- Introduction PIMSlider
- External Corrosion Direct Assessment (ECDA)
- DA-module PIMSlider
- Conclusions
- Acknowledgements

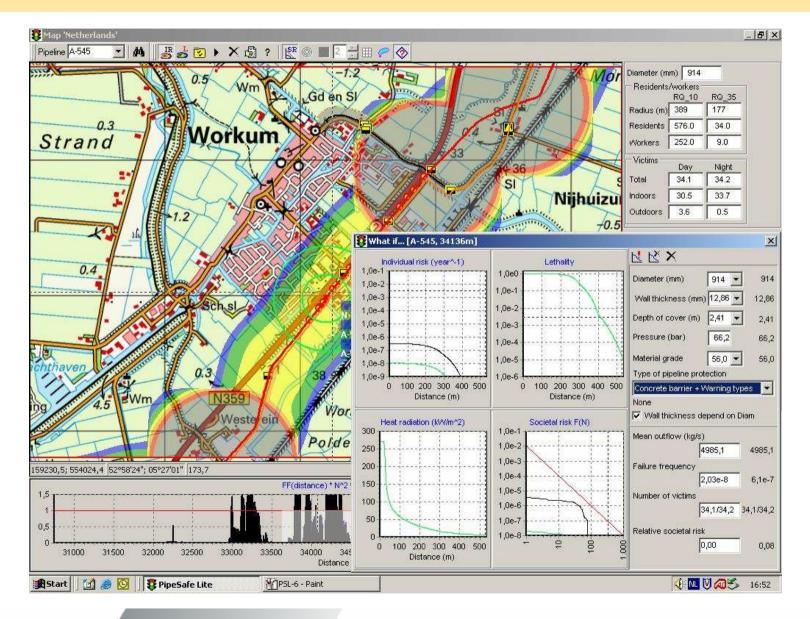
Datamanagement


Full integration of all essential pipeline data:

- Earth profile, depth of cover
- CP posts and trend graphs
- Pipeline characteristics at any point
- Crossings
- Nearby objects
- Inspection data (MFL runs, surveys)
- Linked to GIS environment
- Raw data strength calculations
- Pipeline view (3D)


- Datamanagement
- Presentation of topology

gasume


- Datamanagement
- Presentation of topology
- Monitoring, analyses and modelling of CP

- Datamanagement
- Presentation of topology
- Monitoring, analyses and modelling of CP
- Analyses of MFL pigrun results, pigrun comparison

gasume

- Datamanagement
- Presentation of topology
- Monitoring, analyses and modelling of CP
- Analyses of MFL pigrun results, pigrun comparison
- Risk calculations (individual and group risk)

gasu'ਮe

- Datamanagement
- Presentation of topology
- Monitoring, analyses and modelling of CP
- Analyses of MFL pigrun results, pigrun comparison
- Risk calculations (individual and group risk)
- Direct Assessment
- Optimization of business economics

External Corrosion Direct Assessment

- Total length gas transmission grid
 - HTL: 40-66 bar, > 18", piggable
 - RTL: 8-40 bar, \leq 18", not piggable

6,000 km 5,600 km

11.600 km

- NACE RP0502-2002
- Goal: to prevent external corrosion defects from growing to a size large enough to impact the structural integrity of a pipeline
- The ECDA process consists of 4 steps:
 - 1. Pre-Assessment: collect and review historical and current data of pipeline
 - 2. Indirect Inspection: perform aboveground surveys to determine where threats to pipeline integrity exist
 - 3. Direct Examination: excavate locations identified in step 2 to determine and characterize the extent of corrosion anomalies
 - 4. Post Assessment: determine mitigation activities and future inspection intervals

External Corrosion Direct Assessment

- Data collected in ECDA is subject to uncertainties:
 - Number of defects (DA-techniques versus ILI)
 - Probability of detection
 - Probability of false indication
 - Corrosion rate / size of defects
 - Tolerance of pipeline to defects
- Quantitative methodology (SRA) to account for uncertainties associated with ECDA
- Pipeline integrity is quantified by calculating and updating the failure frequency
- Cost effective: minimize number of excavations

1. Data collection and visualization

Category	Data elements
Pipe-related	Material and grade
	Diameter
	Wall thickness
Construction-related	Year installed
	Year of route change/modification
	 Locations of valves, clamps, supports, taps, couplings, insulating joints etc.
	 Locations and material of casings
	Depth of cover
	Underwater sections; river crossings
	Locations of river weights and anchors
Soils/environmental	Soil characteristics/types, including
	Type of soil (e.g. presence of peat, anaerobic soils)
	Electrical influence (e.g. proximity of DC railways, AC power
	lines)
	Pollution
	Drainage
	Land use (e.g. paved roads)
Corrosion control	Locations of rectifiers
	Test point locations
	Type of coating
	CP survey data/history
Operational data	Pipe inspection reports, excavation reports
	Repair history/record (e.g. repair sleeves, repair locations)
	 Data from previous aboveground surveys
	Inline inspection data

- 1. Data collection and visualization
- 2. Identification of ECDA regions with similar:
 - physical characteristics
 - corrosion history and/or future corrosion conditions
 - indirect inspection tools

- 1. Data collection and visualization
- 2. Identification of ECDA regions with similar:
 - physical characteristics
 - corrosion history and/or future corrosion conditions
 - indirect inspection tools
- 3. Estimate prior condition of pipeline by determining prior distributions for:
 - number of coating and corrosion defects
 - defect depth
 - corrosion rate
 - material properties, geometry pipeline etc.

- 1. Data collection and visualization
- 2. Identification of ECDA regions with similar:
 - physical characteristics
 - corrosion history and/or future corrosion conditions
 - indirect inspection tools
- 3. Estimate prior condition of pipeline by determining prior distributions for:
 - number of coating and corrosion defects
 - defect depth
 - corrosion rate
 - material properties, geometry pipeline etc.
- Output Automatic retrieval of data from pipelines with similar specifications or environmental conditions

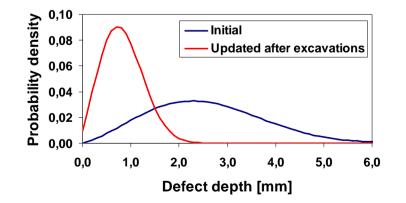
- 1. Data storage
 - DCVG
 - CIPS
 - Wenner
 - dGPS

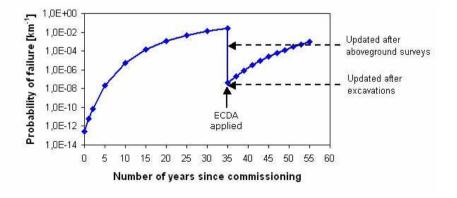
- 1. Data storage
 - DCVG
 - CIPS
 - Wenner
 - dGPS
- 2. Data processing, interpretation and visualization
 - Corrections for depth of cover, soil resistivity etc.
 - IR-free potential

- 1. Data storage
 - DCVG
 - CIPS
 - Wenner
 - dGPS
- 2. Data processing, interpretation and visualization
 - Corrections for depth of cover, soil resistivity etc.
 - IR-free potential
- 3. Priority list for excavations

- 1. Data storage
 - DCVG
 - CIPS
 - Wenner
 - dGPS
- 2. Data processing, interpretation and visualization
 - Corrections for depth of cover, soil resistivity etc.
 - IR-free potential
- 3. Priority list for excavations
- 4. Update condition of pipeline
 - Number of coating and corrosion defects
 - Bayesian statistics

DA-module: direct examination


1. Excavate locations identified by DCVG and CIPS to determine and characterize the extent of the corrosion anomalies


DA-module: direct examination

DA-module: direct examination

- 1. Excavate locations identified by DCVG and CIPS to determine and characterize the extent of the corrosion anomalies
- 2. Update condition of pipeline
 - Survey characteristics
 - Number of coating and corrosion defects
 - Defect depth and length
 - Corrosion rate
 - Failure frequency

1. Calculate failure frequency for all failure modes considered

- 1. Calculate failure frequency for all failure modes considered
- 2. Assess overall effectiveness of ECDA

- 1. Calculate failure frequency for all failure modes considered
- 2. Assess overall effectiveness of ECDA
- 3. Define reassessment interval

Conclusions

- SRA & Bayesian statistics enables quantification of ECDA:
 - Prior knowledge of Integrity
 - Update knowledge based on survey data
 - Update knowledge based on excavations
 - Establish strategy for collection of further data (more excavations) if required
- The DA-module enables automatic updating of numbers and sizes of defects after surveys and excavations
- Updating after each excavation, thus minimizing overall cost
- Implementation finished in December 2006

Acknowledgements

- Andrew Francis and Associates
- ATP Neftegazsystema
- Wytze Sloterdijk, Giorgio Achterbosch, Rob Bos, Kees Dijkstra, Henk Horstink (Gasunie)

For more information please visit the Gasunie stand... 3-300/3-301