

CHARM[®]

The Dawn of a New Era in Checking the Tightness of Natural Gas Pipelines

Werner Zirnig, E.ON Ruhrgas, Germany Matthias Ulbricht, Adlares, Germany

E.ON Ruhrgas AG, Germany

The Company E.ON

- > E.ON is a worldwide integrated power and gas group
- E.ON is the world's largest investor-owned energy services provider with almost 80,000 employees

Adlares GmbH, Germany

> Adlares is specialized in laser-based remote gas detection systems

- > More than 10 years of experience in laser remote sensing:
 - $\checkmark\,$ design of lasers and optics
 - ✓ mechanical engineering and system integration
 - ✓ data acquisition
 - ✓ software development

Contents

- Pipeline operators' monitoring tasks
- > Today's natural gas pipeline monitoring in Germany
- > CHARM[®] The helicopter-borne remote gas detection system
- > Automatic measurement beam positioning by use of GNSS (Global Navigation Satellite Systems)
- Use of innovative technologies
 - the key to improved efficiency and safety in pipeline operation

Natural Gas Pipeline Monitoring Tasks in Germany

- > Prevent Third Party Interference
- Inspect tightness of the pipeline system
- Monitor ground movement
 - ... by paying attention to very different surroundings

Today's Pipeline Surveillance in Germany

Flying-the-line with small helicopters every month or every fortnight helps to identify Third Party Interference

Today's Pipeline Inspection in Germany

Walking-the-line with gas sensors in built-up areas once a year, or more frequently in mining influenced areas, helps to find hidden damages

CHARM® CH₄ Airborne Remote Monitoring

- > The Vision:
 - Combine surveillance flights and inspection of tightness, especially in built-up areas
 - Increase automation and efficiency of monitoring tasks while remaining high safety

- Today's Reality: Helicopter-borne laser gas detection system in operation
 - Flight altitude: up to 150 m
 - Travelling speed: ~ 70 km/hr.
 - 100 measuring spots per sec.
 - Automatic beam positioning
 - Immediate alarm reporting

Laser Measurement Principle

 λ_{on} Wavelength of methane absorption λ_{off} Reference wavelength

DIAL Differential absorption Lidar

eon

ruhrgas

- Lidar Light detection and ranging
- Methane absorption lines at 1,6 µm – 2,3 µm – 3,3 µm

Information Provided by CHARM

Principle of Laser Beam Control

Automatic laser beam positioning along the pipeline track by use of DGPS and Geografic Information Systems

2006

Precision of Laser Beam Control

Automatic laser beam positioning (green line) along the pipeline (blue line) within ± 1.5 m

Use of Innovative Technologies – the Key to Improved Efficiency

> Swift and well-targeted response to any threats

> Efficient and safe natural gas pipeline operation

