23rd World Gas Conference

5-9 June 2006, Amsterdam

Evaluation of methane emissions from the Spanish gas distribution system

J.M. Solís

Gas Natural SDG

J. Barroso, J. Ballester, A. Pina, J.A. Mora

Univ. Zaragoza / LITEC

Outline

- 1. Leakages in gas distribution networks
- 2. Objectives of the study for the Spanish case
- 3. Measurement of leak rates
- 4. Pressure variation method
- 5. Field tests and results
- 6. Conclusions

Leakages in gas distribution networks

- A fraction of the gas natural distributed is released through leakages in the networks
- □ Consequences:
 - Significant economic losses
 - Release of methane:
 - » Greenhouse gas, GWP=21 tonCO₂eq/tonCH₄
 - » In Europe: ~80% of CH_4 emitted due to leakages
- □ Issues:
 - <u>Reduce</u> and <u>quantify</u> the leakages
- □ Assessment of methane leakages:
 - A few field results (BG, Ruhrgas)
 - Emission factors:
 - » Factors for different pressures, materials, ...
 - » Calculation methods and emission factors are different for the diverse countries

Estimations of methane emissions

The ranges are too wide

Current procedure in Spain: PGM-087-E

	Pressure range				
Distribution network (Nm ³ /m/y)	НРВ	НРА	МРВ	МРА	LP
Material					
Steel	7.5	5	2.5	0.62	0.5
Ductile cast iron	-	-	6.5	1.7	1.5
Grey cast iron	-	-	6.5	6	5
Polyethylene	-	-	1	0.22	0.2
PVC	-	1	10	5	3
Service lines (Nm ³ /leakage/y)	13.7	11.9	9.1	6	3.4
SMR's (Nm³/SMR/y)	1000				

Revision of the Spanish procedure

□ Large discrepancies with other methodologies. In particular:

- Steel lines: emission factors are too high compared to others
- PE med. pressure B (MPB: 0.4-4 bar):
 - » Emission factors too high?
 - » Main source of emissions (after update of factor for steel)
- □ Project (2005):
 - Survey of methodologies in the world
 - Identification of critical emission factors
 - Field testing for selected parts of the network \rightarrow PE-MPB

Measurement of leak rates

□ Used in field tests to evaluate actual emissions in the gas network

□ Two main groups,

On whole sections:	On individual leaks:
Pressure decay method (BG)	Bagging method
+ Reliable	+ Service on
- Service off	- Only identified leaks
- High cost and effort	- Excavation required
Pressure variation method (RG)	Suction method (RG)
+ <i>Reliable</i>	+ Service on
+ <i>Low cost and effort</i>	+ No excavation required
+ <i>Service on</i>	- Only identified leaks
- <u>Only</u> if consumers' offtake ↓↓	- Sources of error

Pressure Variation Method - PVM

Gauge pressure (bar)

PVM: Procedure and requirements

□ Procedure:

- 1. Measurement of Qgas @ different pressures
- 2. Estimation of consumers' offtake
- 3. Estimation of leak rate @ operating pressure

□ Requirements:

- Consumers' offtake: <u>Low</u> and <u>stable</u>
- Critical instruments \rightarrow flow rate meters:
 - » Span: large enough to reach maximum flow rate (offtake+leak)
 - » Uncertainty: low enough to resolve very low leak rates

Gauge pressure (bar)

Test unit

□ Test unit:

- Two flowmeters (in parallel, selectable): a wide range of flow rates (0.04-100 m³/h), with good accuracy (down to 0.0012 m³/h)
- Auxiliary instruments: P, T
- Data recording: PC + ADC board

On-site installation

□ Test unit inserted into district Metering and Regulating Stations

Test campaign

- □ Sections of PE-MPB (0.4-4 bar):
 - 34 sites (2-63 km)
 - Total=547,7 km

Data analysis (1)

□ <u>1st Step</u>: Results are validated only if:

- Flow rate < 100 m3/h
- Fluctuations < Mean value
- Flow rate and pressure variations are consistent
 - \rightarrow 21 valid results (out of 34 tests)

Data analysis (2)

 \Box <u>2nd Step</u>:

• Calculation of local emission factor:

$$(\mathsf{EF})_{\mathsf{i}} = \frac{\mathsf{Q}_{\mathsf{leak}}}{\mathsf{L}} 24 \frac{\mathsf{hous}}{\mathsf{day}} 365 \frac{\mathsf{days}}{\mathsf{year}} (\mathsf{Nm}^3 / \mathsf{year} / \mathsf{m})$$

• Calculation of ensemble emission factor:

$$EF = \frac{\sum_{i}^{i} Q_{leak,i}}{\sum_{i}^{i} L_{i}} 24 \frac{hous}{day} 365 \frac{days}{year} (Nm^{3} / year / m)$$

- □ <u>3rd Step</u>: Uncertainty analysis; Sources of error considered:
 - Accuracy of Q, P, T sensors
 - Fluctuations for constant pressure
 - Consumers' offtake: Uncertainty due to extrapolation
 - Estimated leak rate: Uncertainty due to interpolation
 - Variability among sites

 \Box Results are given in terms of: EF±U_i, for a given confidence level

Emission factors

□ Statistics of measured emission factors (21 tests):

- 0.46 ± 0.14 Nm³/year/m (confidence=80%)
- 54% lower than factor currently used in Spain

Emissions in Spain: New vs. Old method

□ Old procedure:

- 0.905 ton CH₄/km
- HP-Steel: 0.49 ton CH₄/km
- MPB-PE: 0.23 ton CH_4/km

□ New procedure:

- 0.478 ton CH₄/km
- HP-Steel: 0.119 ton CH₄/km
- MPB-PE: 0.113 ton CH₄/km

Conclusions (1)

□ Test method:

- Procedures and equipment have been developed for the measurement of leak rates, based on the pressure variation method.
- In cases of low, stable consumption patterns, PVM offers the advantages of reliability and low cost+effort.
- A field campaign has been accomplished in PE-MPB sections in the Spanish distribution network.
 - 21 out of 34 sites yielded valid results.
 - New results have been obtained, which are thought to be applicable to many countries having networks of similar characteristics.

Conclusions (2)

- A new procedure for the estimation of methane emissions in Spain has been developed and submitted to the Ministry of Environment:
 - Emissions attributed to steel mains are significantly reduced (to levels similar to other countries)
 - The emission factor for PE-MPB has been updated, according to the field tests
 - As a result,
 - » The total annual emission has been reduced in 53%
 - » The relative contributions of the different types of lines is significantly modified
- □ Gas Natural SDG is planning additional field tests on MP steel sections for this summer.

