Evaluation of methane emissions from the Spanish gas distribution system

J.M. Solís
Gas Natural SDG

J. Barroso, J. Ballester, A. Pina, J.A. Mora
Univ. Zaragoza / LITEC
1. Leakages in gas distribution networks
2. Objectives of the study for the Spanish case
3. Measurement of leak rates
4. Pressure variation method
5. Field tests and results
6. Conclusions
A fraction of the gas naturally distributed is released through leakages in the networks.

Consequences:
- Significant economic losses
- Release of methane:
 - Greenhouse gas, GWP=21 tonCO$_2$eq/tonCH$_4$
 - In Europe: ~80% of CH$_4$ emitted due to leakages

Issues:
- Reduce and quantify the leakages

Assessment of methane leakages:
- A few field results (BG, Ruhrgas)
- Emission factors:
 - Factors for different pressures, materials, ...
 - Calculation methods and emission factors are different for the diverse countries
Estimations of methane emissions

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Distribution</th>
<th>Service lines</th>
<th>SMR’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nm³/m/y</td>
<td>Nm³/m/y</td>
<td>Nm³/Leakage/y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPA-S</td>
<td>5</td>
<td>1</td>
<td>11.9</td>
</tr>
<tr>
<td>MPB-PE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA EIA 95/96 without p distinction (plastic and N-p.)</td>
<td>0.156 / 0.684</td>
<td>0.017 / 0.172</td>
<td>-</td>
</tr>
<tr>
<td>Steczko USA / Canada 2003</td>
<td></td>
<td></td>
<td>0.99 / 0.73 Nm³/m/y (network + service + EMR)</td>
</tr>
<tr>
<td>IGU (2000) medium and low</td>
<td>2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Steczko. for not own data</td>
<td>2.89</td>
<td>0.385</td>
<td>-</td>
</tr>
<tr>
<td>Lott (EEUU). without p distinction</td>
<td>1.321</td>
<td>0.039</td>
<td>0.929 Nm³/Ser/y</td>
</tr>
<tr>
<td>Germany West / Est</td>
<td>0.165 / 1.648</td>
<td>0.034 / 0.247</td>
<td>0.55 / 5.49 Nm³/m/y</td>
</tr>
<tr>
<td>British Gas at 30 mbar (distribution + service lines)</td>
<td>-</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>Eurogas-Marcogaz (minimum / maximum)</td>
<td>0.233 / 0.339</td>
<td>0.064 / 0.300</td>
<td>20 / 90%</td>
</tr>
</tbody>
</table>

The ranges are too wide
Current procedure in Spain: PGM-087-E

<table>
<thead>
<tr>
<th>Distribution network (Nm³/m/y)</th>
<th>HPB</th>
<th>HPA</th>
<th>MPB</th>
<th>MPA</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>7.5</td>
<td>5</td>
<td>2.5</td>
<td>0.62</td>
<td>0.5</td>
</tr>
<tr>
<td>Ductile cast iron</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Grey cast iron</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.22</td>
<td>0.2</td>
</tr>
<tr>
<td>PVC</td>
<td>-</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Service lines (Nm³/leakage/y)</td>
<td>13.7</td>
<td>11.9</td>
<td>9.1</td>
<td>6</td>
<td>3.4</td>
</tr>
<tr>
<td>SMR’s (Nm³/SMR/y)</td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
Revision of the Spanish procedure

- Large discrepancies with other methodologies. In particular:
 - Steel lines: emission factors are too high compared to others
 - PE – med. pressure B (MPB: 0.4-4 bar):
 » Emission factors too high?
 » Main source of emissions (after update of factor for steel)

- Project (2005):
 - Survey of methodologies in the world
 - Identification of critical emission factors
 - Field testing for selected parts of the network → PE-MPB
Measurement of leak rates

- Used in field tests to evaluate actual emissions in the gas network

- Two main groups,

<table>
<thead>
<tr>
<th>On whole sections:</th>
<th>On individual leaks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure decay method (BG)</td>
<td>Bagging method</td>
</tr>
<tr>
<td>+ Reliable</td>
<td>+ Service on</td>
</tr>
<tr>
<td>- Service off</td>
<td>- Only identified leaks</td>
</tr>
<tr>
<td>- High cost and effort</td>
<td>- Excavation required</td>
</tr>
<tr>
<td>Pressure variation method (RG)</td>
<td>Suction method (RG)</td>
</tr>
<tr>
<td>+ Reliable</td>
<td>+ Service on</td>
</tr>
<tr>
<td>+ Low cost and effort</td>
<td>+ No excavation required</td>
</tr>
<tr>
<td>+ Service on</td>
<td>- Only identified leaks</td>
</tr>
<tr>
<td>- Only if consumers’ offtake↓↓↓</td>
<td>- Sources of error</td>
</tr>
</tbody>
</table>
Pressure Variation Method - **PVM**

![Graph showing gas flow in Nm³/h against gauge pressure in bar. The x-axis represents gauge pressure ranging from 0 to 3 bar, and the y-axis represents gas flow ranging from 0 to 1.8 Nm³/h. There is a shaded area indicating gas leakage and a notation for customers' offtake.]
PVM: Procedure and requirements

- **Procedure:**
 1. Measurement of Q_{gas} @ different pressures
 2. Estimation of consumers’ offtake
 3. Estimation of leak rate @ operating pressure

- **Requirements:**
 - Consumers’ offtake: **Low** and **stable**
 - Critical instruments → flow rate meters:
 - **Span:** large enough to reach maximum flow rate (offtake+leak)
 - **Uncertainty:** low enough to resolve very low leak rates
Test unit:

- Two flowimeters (in parallel, selectable): a wide range of flow rates (0.04-100 m³/h), with good accuracy (down to 0.0012 m³/h)
- Auxiliary instruments: P, T
- Data recording: PC + ADC board
On-site installation

- Test unit inserted into district Metering and Regulating Stations
Test campaign

- Sections of PE-MPB (0.4-4 bar):
 - 34 sites (2-63 km)
 - Total=547.7 km

![Frequency chart showing the distribution of section lengths](chart.png)

![Map of Spain](map.png)
Data analysis (1)

1st Step: Results are validated only if:
- Flow rate < 100 m³/h
- Fluctuations < Mean value
- Flow rate and pressure variations are consistent
→ 21 valid results (out of 34 tests)
Data analysis (2)

2nd Step:
- Calculation of local emission factor:

\[
(\text{EF})_i = \frac{Q_{\text{leak}}}{L} \cdot \frac{24}{\text{hous}} \cdot \frac{365}{\text{day}} \cdot \frac{\text{days}}{\text{year}} (\text{Nm}^3 / \text{year} / \text{m})
\]

- Calculation of ensemble emission factor:

\[
\text{EF} = \frac{\sum_i Q_{\text{leak},i} \cdot 24}{\sum_i L_i \cdot \frac{365}{\text{day}} \cdot \frac{\text{days}}{\text{year}}} (\text{Nm}^3 / \text{year} / \text{m})
\]

3rd Step: Uncertainty analysis; Sources of error considered:
- Accuracy of Q, P, T sensors
- Fluctuations for constant pressure
- Consumers’ offtake: Uncertainty due to extrapolation
- Estimated leak rate: Uncertainty due to interpolation
- Variability among sites

Results are given in terms of: \(\text{EF} \pm U_i\), for a given confidence level
Emission factors

- Statistics of measured emission factors (21 tests):
 - $0.46 \pm 0.14 \text{ Nm}^3/\text{year/m}$ (confidence=80%)
 - 54% lower than factor currently used in Spain

Histogram

- Intervals of emission factors ($\text{Nm}^3/\text{year/m}$)
 - Frequency
 - % total
Emissions in Spain: New vs. Old method

- **Old procedure:**
 - 0.905 ton CH$_4$/km
 - HP-Steel: 0.49 ton CH$_4$/km
 - MPB-PE: 0.23 ton CH$_4$/km

- **New procedure:**
 - 0.478 ton CH$_4$/km
 - HP-Steel: 0.119 ton CH$_4$/km
 - MPB-PE: 0.113 ton CH$_4$/km
Test method:

- Procedures and equipment have been developed for the measurement of leak rates, based on the pressure variation method.
- In cases of low, stable consumption patterns, PVM offers the advantages of reliability and low cost and effort.

A field campaign has been accomplished in PE-MPB sections in the Spanish distribution network.

- 21 out of 34 sites yielded valid results.
- New results have been obtained, which are thought to be applicable to many countries having networks of similar characteristics.
A new procedure for the estimation of methane emissions in Spain has been developed and submitted to the Ministry of Environment:

- Emissions attributed to steel mains are significantly reduced (to levels similar to other countries)
- The emission factor for PE-MPB has been updated, according to the field tests
- As a result,
 - The total annual emission has been reduced in 53%
 - The relative contributions of the different types of lines is significantly modified

Gas Natural SDG is planning additional field tests on MP steel sections for this summer.