Risk Based Leakage Survey

SP AusNet's objective was to find an optimum balance between proactive leak management and reactive leak management

Low

Med

High

Pipe Types – Leakage Data

Material	Leaks/km/yr			
Cast iron	1.67			
Unprotected steel	.78			
PVC	0.28			
Protected steel	0.12			
Polyethylene	0.07			
Transmission	0.00			
System average	0.36			

Area Categories:

- Population density
- Leak Path
- Type of Building
- Ground Movement

-----/

0.5

		Su
		1 & 2
Pipe Type	Current	Calc'
Cast Iron	4	2
Unprotected Steel	4	6
Polyethylene Pipe and Protected Steel	4	20
PVC	4	
Transmission Pipe	4	20
Internal Services	0.5	-

0.5

0.5

6 7 8 9 10 11 1

Risk Based Leakage Survey; reduces the cost of leakage survey and leak repair, lowers environmental effects and Increases public & network safety

Not ul?	Gas Confined?	Lel Reached?	Ignition?		Probability Cases Per Km Pa	Consequence Type	
				$\overline{}$	— 1.26E+00	Response & Repair	
	0.99		0.9		— 1.14E-02	Response & Repair	
	0.01		0.1	0.998	1.27E-03	Response & Repair	
		0.999 0.001		0.002	2.54E-06	Fire	
			0.9		— 1.14E-05	Response & Repair	
ected leaks =			0.1	0.9	1.14E-06	Response & Repair	
1.66E+00per k ∮	m pa	•		0.1	1.27E-07	Explosion	
km pa =						Planned Repair	
3.93E-01	0.99		0.9			Planned Repair	
y inspection)	0.01		0.1	0 998		Planned Repair	
L		0.999 0.001		0.002			
			0.9			Planned Repair	
			0.1	0.9		Planned Repair	
				0.1	3.93E-08	Explosion	
				0.998	7.99E-03	UAFG	
		0.999		0.002			
ot detected by	inspection)	0.001	0.9		7.21E-06	UAFG	
			0.1	.0 0	7.21E-07	UAFG	
				0.1	8.02E-08	Explosion	

Survey Intervals (Years) Area Category								
	1 & 2			3 & 4				
Pipe Type	Old	2002	New	Old	2002	New		
Cast Iron	4	2	Trigger	1	1			
Unprotected Steel	4	4	Trigger	1	1	1		
Polyethylene Pipe and Protected Steel	4	8	Nil	1	1	Nil		
PVC	4	6	Trigger	1	1	1		
Transmission Pipe	4	4	4	1	1	1		
Internal Services	0.5	0.5	0.5	0.5	0.5	0.5		

Leaks found by leakage survey are small, low risk leaks