

WGC, Amsterdam, June 7th 2006

SHOULD WE ADD HYDROGEN TO THE NATURAL GAS GRID TO REDUCE CO₂-EMISSIONS?

(CONSEQUENCES FOR GAS UTILIZATION EQUIPMENT)

B. K. Slim, H. Darmeveil, G.H.J. van Dijk, D. Last, G.T. Pieters and M.H. Rotink, Gasunie Engineering & Technology, Groningen, The Netherlands
J.J. Overdiep, Gasunie Trade & Supply, Groningen, The Netherlands
H.B. Levinsky, Gasunie Engineering & Technology and University of Groningen

Berthil Slim,

Gasunie Engineering & Technology

CONTENTS

- 1. Introduction
- 2. CO₂ Reduction
- 3. Changes in Combustion Properties
- 4. Response to H_2 addition of:
 - Domestic Appliances
 - Industrial Burners
 - Spark-Ignition Piston Engines
 - Gas Turbines
- 5. Conclusions
 - Acknowledgement

1. INTRODUCTION

Why use Hydrogen (H₂)?

- CO₂ Reduction (Kyoto)
- H_2 possible from renewable sources
 - e.g. Solar, Wind, Biomass

Why H₂ in natural gas ?

- Smooth introduction towards **sustainable energy** possible_ using the existing natural gas infrastructure

Why Research/Knowledge/Experience needed ?

- End user:
 - H₂ has different combustion properties than natural gas
 - ➔ possible negative consequences for combustion equipment
- Grid

2. CO₂ REDUCTION (by H₂ addition)

Natural Gas: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ (mainly CH_4 [methane]) Hydrogen: $2H_2 + O_2 \rightarrow 2H_2O$ (No CO_2)

Low heating value of H₂:

e.g. replacing natural gas by 50% $H_2 \rightarrow CO_2$ emission decreased by only 25%!

(per unit of energy [kg CO₂/MJ])

This "reduced" decrease of CO₂ emission must be weighed against the other consequences of hydrogen addition

3. CHANGES IN COMBUSTION PROPERTIES

(by H₂ addition)

Gross Calorific Value:

 $\sim 3x$ more H_2 needed for same thermal input

Wobbe Index, W:

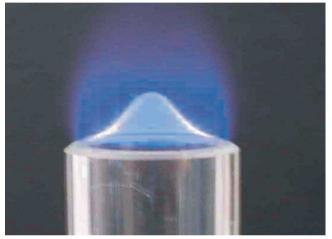
thermal input proportional to WI at constant pressure drop H_2 : ~ 3x flow rate of Natural Gas at same Wobbe Index (48 MJ/m³)

Stoichiometric Air Requirement (SAR):

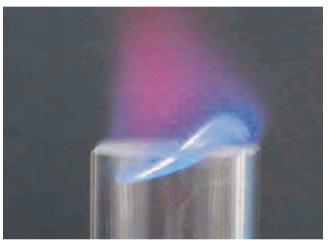
H₂ requires 25% of the O₂ of Natural Gas per mole of gas \rightarrow flame temperature higher:2382K vs 2226K \rightarrow important for NO_x

Ignition Properties:

H₂ knocks easier than natural gas; engine at risk ?


Burning Velocity, Su:

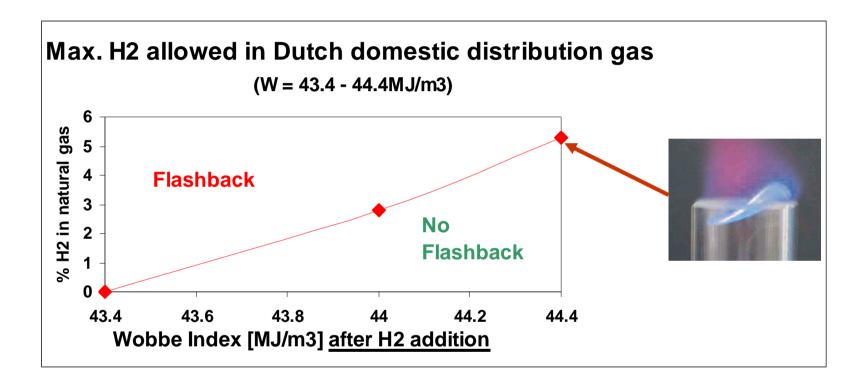
Propagation velocity; closely related to stability: Su higher than exit velocity \rightarrow flash-back


Su H₂ ~ 6x higher than methane, will flash-back occur?

4. RESPONSE TO H₂ ADDITION OF: Domestic Appliances

Of the domestic appliances the **Partially Premixed Burner** ("cooking burner") is most prone to flashback

Bunsen experiments: Normal Flame


(Incipient) Flashback

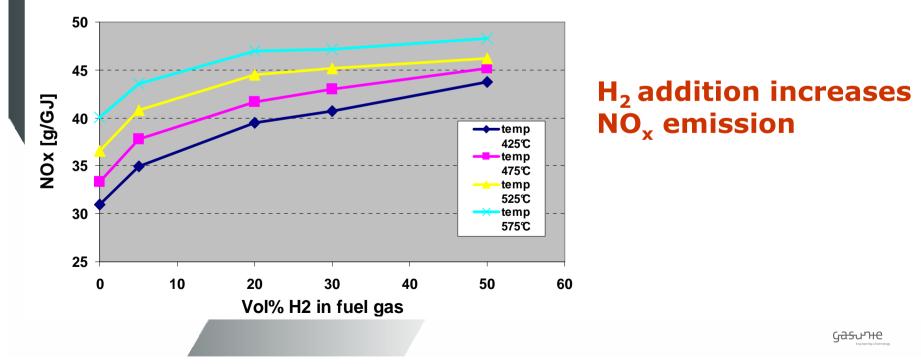
Requirement:

Natural Gas/ H_2 mixture may not flashback easier than any gas distributed in the past

Flame speed increases at decreasing Wobbe Index \rightarrow Lowest Wobbe Index distributed is most sensitive to flashback

4. RESPONSE TO H₂ ADDITION OF: Domestic Appliances

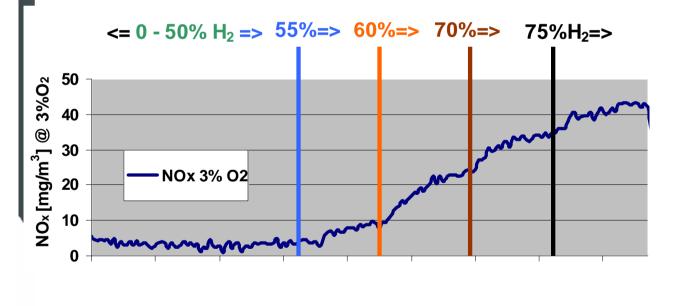
Only 5% H₂ allowed at Upper Wobbe Limit


If the Wobbe Index is allowed to fluctuate the allowable H_2 addition becomes even lower

4. RESPONSE TO H₂ ADDITION OF: **Industrial Burners**

Conventional Process-Burner

- Nozzle-mix
- ➔ No flashback
- Flame closer to burner \rightarrow Overheating a risk ?
- Higher flame temp. \rightarrow More NO_x?


NO_x formation for different H₂ concentrations in natural gas at different test furnace temperatures

4. RESPONSE TO H₂ ADDITION OF: Industrial Burners

Prototype Flameless -Burner

NO_x -emissions with increasing H₂-addition

Flameless mode

- (H₂ < 55 %):
- ${}_{\bullet} {\rm Very} \ {\rm low} \ {\rm NO}_{\rm X}$
- •No visible flame

- More H₂ (>55%):
- More NO_X
- •Blue flame

Gasume

4. RESPONSE TO H₂ ADDITION OF: Spark-Ignition Engines

H₂ increases the burning velocity of natural gas:

Experiments showed (lean-burn engine):

20% of H_2 added \rightarrow efficiency + 3%

due to:

- Shorter ignition lag period
- Faster combustion

At constant air-fuel ratio the NO_x -emission can double at 20% H₂ !

H₂ spontaneously ignites much easier than methane:

➔ engine knock is a risk !

Engine knock:

= autoignition of unburned fuel gas (unwanted)

Engine can be damaged rapidly ! (in seconds)

4. RESPONSE TO H₂ ADDITION OF: Gas Turbines

Lean-premixed (Low NO_x) gas turbines are extremely sensitive to variations in gas composition:

- Spontaneous ignition before reaching the burner
- Flashback of the flame into the burner
- Flame blow-off
- Partial flame lift → Acoustic instabilities

Generally:

- <10% H₂ addition allowed by manufacturers
- Little *fluctuation* in H₂ content is tolerated

5. CONCLUSIONS

Hydrogen addition to natural gas has some benefits:

- CO₂ reduction (but limited)
- Possible from renewable sources

But also some specific "consequences" for each class of end-use equipment with respect to safety and environmental impact, such as:

- **Domestic Appliances:** flashback
- **Industrial Burners:** increased NO_x-formation
- **SI Engines:** engine knock and increased NO_x-formation
- **Gasturbines:** flashback and acoustic instabilities

The decrease of CO₂ emission must be weighed against the other consequences of hydrogen addition

We gratefully acknowledge :

The EET Program of the Dutch Ministery of Economic Affairs and Gasunie Trade & Supply

for their support of this work.