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Abstract 

Integrated logistic support ILS is a methodology to identifying and optimizing maintenance resources 
in order to preserve a desired level of system performances. Its successful implementation relies on 
the development of structured support methods for complex systems by which different maintenance 
activities are predefined and optimized.  Examples of these methods are spare part management, repair 
facilities management, reliability centred maintenance, among others. This paper presents a 
supportability decision model, as application of ILS, based on queuing theory for managing spares 
inventory in a limited repair capacity. Validation was performed by real world testing of the model 
within the Algerian petroleum industry. Such a maintenance support model potentially reduces system 
downtimes and leads to higher system output.  The results show that gas turbines, major equipment in 
gas boosting stations, could be effectively managed by minimizing their whole life costs and 
maximizing their outputs. The proposed model is adequately generic to be extended to other complex 
systems in the Petroleum Industry. 
Keywords: spare part, repair capacity, queuing, availability, logistics support & maintenance. 

INTRODUCTION 

Today’s asset management developments reveal a recent intensive partnership between the different business actors. 
Corporation relationships between manufacturers and clients have become more common; there are industry guidelines 
for more integrated management approaches such as: integrated logistics support for the military industry (United States 
Department of Defense, 1983), Private Finance Initiative PFI for construction industry (Kishk et al., 2003), among 
others.  Accordingly, more organisations are adopting a holistic based decision-making that relates design, 
manufacturing and operation phases. Within this new environment, clients are requiring more reliable products along 
with an efficient maintenance support.  (Blanchard, et al., 1998 and Rappold, et al., B. D, 2009) asserted that 
maintenance and its support represent the major contributor to whole life cost for many types of systems. To this end 
the integrated logistic support ILS, which is a methodology to identifying and optimizing maintenance resources in 
order to preserve a desired level of system performances, plays important role in achieving these requirements. 

Another actual tendency is characterised by the fact that current technological equipment such aircraft, HVAC, 
petroleum, medical and military equipment are becoming more complex and scattered over a huge geographical area 
(Sleptchenko, et al., 2005; and Rustenburg, et al., 2001). Besides, they have complex structures that malfunction because 
the enclosing items are either failed or worn out during operation. One way to ensure a high level of system availability 
is to hold enough spare parts to provide an immediate replacement of the failed items. Nevertheless, holding enough 
spares may be very costly and risks being obsolete over time; thus a balance between cost of spares and system 
availability is necessary. These issues are already challenging for systems consisting of thousands of items structured 
in several levels called the multi-indenture systems. In addition, these systems may be installed at different locations, 
in which case maintenance facilities should be needed at the local levels, intermediate levels and the central level: this 
is called the multi-echelon repair network (Kim, et al., 2007).  The spare part allocation is, therefore, an optimal supply 
throughout all pyramidal subordination of maintenance levels. This optimisation has been regarded as an important area 
for maintenance cost reduction and has been considered in the last decades by many researchers (Kim, et al., 2000). 

For literature on spare part optimisation, the evolution of the related models can be found in Sherbrooke, (1668), 
Kennedey, et al., (2002), Avsar, et al. (2000) and Sleptchenko, et al., (2002). In these papers the area of study is devoted 
to multi-echelon inventory systems in which spare part is stored at different levels. In addition, this bulk of research in 
multi-echelon spare part inventory management can be categorised into two main classes: spare part optimisation under 
infinite repair capacity and under limited repair capacity. However, these two classes are based on METRIC model 
developed by Sleptchenko, et al., (2002). In this model, also called Multi Echelon Technique Repairable Item Control, 
all repair levels are supplied by intermediate levels or a central depot which in turn is supplied by the spare part 
manufacturers. When an item fails, it is sent out to repair and a spare is plugged in. If the spare part is not available, it 
is backordered from the preceding repair levels. As a result, all repair levels operate according to a continuous stocking 
policy (S - 1, S) and the considered model intends to maximize system availability subject to a budget constraint using 
marginal analysis Sherbrooke, (1668).  Besides, METRIC considers that the installed repair capacity is unlimited, thus 
the repair times and the number of components in repair are assumed to independent. Other feature of METRIC model 



is first-come-first-served replenishment policy at all repair level and item failure rate is assumed to follow Poisson 
distribution. Consequently, the number of items at bases, in transportation or in repair is approximated to be Poisson 
distribution. Under the Poisson distribution, the mean of backordered items are equal to their variance. 
 
Afterwards, there have been several lines of research on enhancing METRIC outputs.   One line pertains to add some 
features to METRIC model to tackle some practical issues. On the basis of the previous model, Muckstadt (1973) 
presented the MOD-METRIC to analyse two-indenture systems instead of single indenture ones. Moreover, Slay (1984) 
proposed VARI-METRIC model where the hypothesis of the equality of backorder mean and variance are no longer 
assumed. Moinzadeh et al. (1986) have delivered a decision tool to select an (S - 1, S) policy versus an (r, Q) policy.  
Their tool was tailored only to multi-echelon inventory systems with a single indenture. In addition, Axsater (1990) has 
optimized inventory base stock levels by determining average holding and shortage costs. The common characteristic 
of these researches is they have focus only of spar part inventory.  
 
In all models reviewed hitherto repair capacity is assumed ample which is often an unrealistic in real-world contexts. In 
industrial setting of spare part inventory analysis, each repairable failed item is supplied to repair shop where reparation 
time encompasses generally waiting time for repair and repair time. A serious limitation of the previous models is that 
they work under the assumption that both waiting time and repair time are constants and independent for each 
component, i.e. the repair capacity is infinite. Due to budget constraints, companies invest a certain amount in repair 
facilities to guarantee a predefined level of maintenance performances and therefore infinite repair capacity is seldom 
realistic.  This causes an overestimate in spare parts to maintain target availability above a predefined threshold value.  
Díaz et al., (1997) were the first who studied spare part management under limited repair facilities. They consider the 
situation where all failed items are repaired only at the central level which has a limited capacity. Their approximation 
for the repair time was based on queuing theory.  Unfortunately, they derived model equations only for a single-server 
multi-class queue model due to analytical complication. Sleptchenko et al. (2002, 2005) extended the previous work by 
studying a more general multi-class multi-server queuing model.  However, to deliver an analytical solution, they limit 
themselves to steady state for a given repair capacity.  
 
Based on the above review, extensive research has been devoted to the fields of inventory location theory, queuing 
theory and level of repair analysis; yet research that establishes the interaction of these fields is limited. This paper 
reviews the current research on the spare part management and in particular, it focuses on the interaction between spare 
part provision and repair capacity. Its outcome will be a part of further research pertaining to provide a framework to 
support policy and decision-makers model that simultaneously considers a multi-echelon repair network with inventory 
pooling and finite repair capacity for multi-indenture systems. To our knowledge, past research has not jointly 
considered these three factors. 
 
The organization of this paper is as follows. Section 2 gives the basic of VARI-METRIC technique and its mathematical 
model for multi-echelon and multi-indenture system. Section 3 is dedicated to reviewing the major classes of queueing 
theory models for finite repair capacity. Based on these models, Section 4 discusses the heuristic optimisation algorithm 
which takes into account the effect of limited repair capacity. This algorithm is tested in a numerical experiment in 
Section 5. Finally, in Section 6, the results of the study are summarised and some areas for future research are given 
 

MODEL DESCRIPTION  

The objective of our model is to jointly find out spare part stocks that satisfy installed repair capacity and desired level 
of system availability, while minimizing the relevant whole life costs. In particular, the purposes this model identifies 
spare part flow within repair network are twofold: (a) to study for a given budget threshold the required spare part 
inventory which maximizes system availability, and (b) to study the effect of repair capacity on maintenance 
performance measures (e.g., system availability and maintenance and support costs).  
 
In this section, VARI-METRIC model for a multi-echelon repair network and multi-indenture system is described (Slay, 
1984). Firstly, the model notation and hypothesis, similar as in the VARI-METRIC model, are presented. Secondly, the 
operational availability is expressed as a mathematical function of the requested spare part from preceding supply levels, 
namely backorder. 
 
The assumption adopted in this paper is as follows: 
 

1. All items can be repaired within repair network;  
2. Failures are stationary Poisson processes and independent of the number of items under repair; 
3. (s – 1, s) inventory policy is applied for all items at all repair bases. 
4. The repair time of any item follows an exponential distribution. 
5. There is no lateral supply, i.e., no supply or shipment between bases at the same level; 



6. Each failed item is shipped between the repair bases without delay (an infinite number of transporters). The 
transportation time is known as order-and-ship time. 

7. Backorders for different items have the same importance. 
8. Repair resources are allocated to failed items according to the FCFS (first come first served) policy; 
9. When repair is done, all failed items become as good as new. 

 

  

Figure 1: A multi-echelon repair network and a multi-indenture system 

 
The notation adopted in this paper is as follows: 
 

1. Input parameters 
 

N number of systems; 
I  number of assemblies within each system ; 
Zik  number of occurrences of assembly I in the system k; 
i  = {1, 2,...,n} :  set of spare parts;  
j  = {1, 2,...,M} : set of local bases; the index 0 is reserved for the central depot;  
 i j   failure rate of part i at base j;  
S i j   stock level for part i at base j (decision variable); 
Ri j  probability that item i can be repaired at base j; 
Rti j  mean repair time of part i at base j;  
Oi j mean transportation time of item i between the base j and its supplier (referred also by order-

and-ship time) 

ci  price of item i 
BOij (S ij)          numbers of backorders for item i at base j as function of the stock levels S ij;  
PBOij(S ij)  backorder probability for item i at base j as function of the stock levels S ij; 

 

2. decision parameters 
 

N number of systems; 
I  number of assemblies within each system ; 
Zik  number of occurrences of assembly I in the system k ; 

 

3. intermediate parameters 
 

N number of systems; 
I  number of assemblies within each system; 

The number of backorders, denoted by	BO୧୨൫S୧୨൯, stands for requested quantities of item i from its supplying location j. 

	BO୧୨൫S୧୨൯	is the positive value representing the difference between the needed spare parts of item i, denoted by 

pipeline	P୧୨, and the stock at hand S୧୨		at the base j;	BO୧୨൫S୧୨൯ ൌ 	 ൫P୧୨ െ S୧୨൯
ା
ൌ max൫0, P୧୨ െ S୧୨൯. In other word, if the 

stock at hand 	S୧୨	is greater than 	P୧୨	there will be no spare part demand from the preceding repair bases. 
 
In order to be consistent with spare part literature and its pioneer model METRIC, the Number of Backorders BO	is 
considered as the measure of system performance. Employing Sherbrooke's approximation, the average system 
availability of system is: 

	A ൌ ∏ ሺ1 െ
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N   number of items i 
EBO୧ሺS୧ሻ  expected backorders of item type i for stock level Si ሺ0 ൑ EBO୧ሺS୧ሻ 	൑ N ∗ Z୧					ሻ	

 

The difference ሺ1 െ
୉୆୓౟ሺୗ౟ሻ

୞౟
ሻ represents the availability of item i. This term to the power Z୧		 represent the availability 

of a system due to item i. Finally, multiplying over all service items (i=1..N) gives the general expression for the 
availability of a system as a result of the stocking policy for service items. Therefore, the probability that the system is 

not down due to a lack of an item i is ሺ1 െ
୆୓౟ሺୗ౟ሻ

୞౟
ሻ୞౟. The above Sherbrooke's formula assumes that the probabilities for 

different item i are independent and the system is a serial structure in reliability terminology. By applying logarithm 
to	A	 and taking the expectation of (1), the average availability of all systems at downstream repair base ech(N) is: 

A ൌ 1 െ
ଵ
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   (2) 

The spare part management objective is to determine inventory policies at bases to minimize spare holding costs while 
maintaining an average availability greater than a given threshold value. Sherbrooke shows that maximising this 
availability function is approximately equivalent to minimising the sum of the expected backorders. Consequently, the 
optimization of spare part inventory will be: 
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    (3) 

The above mentioned integer programming model requires the identification of steady-state expressions for the 
backorder and stock levels. Let us consider the following situation to derive backorder expressions. In the case where 
there are plenty of spares at bases to satisfy demand	ሺS୧୨~∞ሻ, there will be no delay. However, at low spare quantities 
there will be delay time for transportation time (order and receive between bases) plus repair time. Therefore, delay can 
be expressed as a function of stock level S; if the demand x is less than S there will be no delay but if there are greater 
than S, then the supply of (x-S) items will be delayed. The expected number of delayed items or the expected number 
of backorder may be expressed: 

BO୧ሺi, jሻ ൌ ∑ ሺx െ Sሻ ∗ Pሺx ൐ ܵሻஶ
1Sx 

    

   (4) 

As a result, for each stock level S  the expected backorders is obtained as a function of the stock level S, the demand x 
(pipeline) and the pipeline distribution probability P(x>S).  

The failure rate 	λ୧	୨ of item i at base j is computed by adding the following two values: 

1. The failure rates of this item at downstream bases at which repair actions could not be done	∑ 	λ୧	୪ ∗ୠୟୱୣ	୪வ௝

ሺ1 െ r୧	ଵሻ:  where r୧,୨ is the probability that an item i could be repaired at base j. 

2. The failure rates of higher indenture items :∑ 	q୩	୧ ∗ 	λ୩	୪ ∗ r୩	୨
୮ୟ୰ୣ୬୲	୧
୩ୀଵ  where : q୩	୧is the probability that item k 

is the cause of the failure of its parent i and 
r୩	୨	: the probability that an item k could be repaired at base j.  

 

Thus, the failure rate of any item i will be:  

λ୧	୨ ൌ ∑ 	λ୧	୪ ∗ ሺ1 െ r୧	ଵሻୠୟୱୣ	୪வ௝ ൅ ∑ 	q୩	୧ ∗ 	λ୩	୨ ∗ r୩	୨
୮ୟ୰ୣ୬୲	୧
୩ୀଵ    (5) 

 

Starting by the highest indenture items, all failure rates can be calculated recursively. the demand quantities or pipeline 
for the bases are computed according to METRIC assumptions. That is, the repair time and order and ship time from 
the higher bases are independent and both follow Poisson distribution with parameters λ୧	୨ ∗ 	 rt୧	୨ and	λ୧	୨ ∗ 	O୧	୨. The 
pipeline of item i at base j will be therefore the superposition of the mean of these two Poisson distributions multiplied 
by respective probabilities. Thus: 

P୧	୨ ൌ λ୧	୨ ∗ 	 rt୧	୨ ∗ 	 r୧	୨ ൅ 	λ୧	୨ ∗ 	O୧	୨ ∗ 	 ሺ1 െ r୧	୨ሻ    (6) 

From Equation 6, it is easy to notice that the pipelines should be extended to take into account pipeline from both higher 
bases and higher indentures. Only a fraction of the pipeline at base j suppliers originates from base j. As considered in 



the literature, orders are filed in First Come First Served basis. Consequently every order has a probability f୧	୨ ൌ
		஛౟	ౠ∗	ሺଵି୰౟	ౠሻ

஛౟	౩౫౦	ሺౠሻ
 to originate from base j. 

 

Figure 2: A multi-echelon repair network process 

Then the number of orders that stems from base j, equals		f୧	୨ ∗ 	BO୧		ୱ୳୮	ሺ୨ሻ	. Pipeline expression generated from higher 

indentures is derived as follow: Let us consider an item k for which j is a parent. Only a fraction h୧	୨	୩ ൌ
	୰ౡ	ౠ		∗	஛౟	ౠ	∗	୯౟	ౡ

஛ౡ	౟
	  

of the backorders for item k at location j arising from item j. then, the mean value of pipeline generated from higher 
indenture of item j equals : ∑ ሺh୧	୨	୩ ∗ 	BO୩	୨ሻ୩	∈	ୗ୅ሺ୨ሻ . Hence, the pipeline of item i at base j can be written as: 

P୧	୨ ൌ λ୧	୨ ∗ 	 rt୧	୨ ∗ 	 r୧	୨ ൅ 	λ୧	୨ ∗ 	O୧	୨ ∗ 	൫1 െ r୧	୨൯ ൅ 	f୧	୨ ∗ 	BO୧	 ୱ୳୮ሺ୨ሻ ൅ ∑ ሺh୧	୨	୩ ∗ 	BO୩	୨ሻ୩	∈	ୗ୅ሺ୨ሻ 		  (7)                                           

The equation 7 may be interpreted as follows. The term λ୧	୨ ∗ 	O୧	୨ ∗ 	 ൫1 െ r୧	୨൯ represents the part of pipeline due to the 
transportation process between bases; the terms λ୧	୨ ∗ 	 rt୧	୨ ∗ 	 r୧	୨ 

and 	f୧	୨ ∗ 	BO୧		ୱ୳୮	ሺ୨ሻ	 denote the part that is delayed due 
to a lack of stock at base j and its supplier echelons and finally the term		∑ ሺh୧	୨	୩ ∗ 	BO୩	୨ሻ୩	∈	ୗ୅ሺ୨ሻ

 

refers also to the lack 
of stock of higher enclosure indentures at base  j. From equations 4 and 7, we noticed that the expected backorder is 
computed from pipeline values and the later are calculated from expected backorder values. As result, backorders are 
computed recursively.  

For a given base stock S, evaluation of the steady state backorder probabilities can be done  as described in  ,  by fitting 
discrete distribution on the first two backorder moments, e. i expected value and variance.  In METRIC it is assumed 
that the variance equals the expected backorder of items in repair process, however several researchers have noticed 
that variance to mean ratio is no longer equals to 1 such under  Poisson distribution, but it is usually greater than 1 in 
practice.  Slay and Graves developed an approximation for backorder probabilities by applying binomial distribution 
and the negative binomial distribution respectively. In this paper, the approximation is obtained by Poisson, Negative 
Binomial or geometric distributions as described by Adan et al. Similar to the expression for the expected backorders, 
the variance equals to (): 

Var	୧	୨ ൌ λ୧	୨ ∗ 	 rt୧	୨ ∗ 	 r୧	୨ ൅ 	λ୧	୨ ∗ 	O୧	୨ ∗ 	൫1 െ r୧	୨൯ ൅ 	f୧	୨ ∗ 	 ൫1 െ 	f୧	୨൯ 	∗ BO୧	 ୱ୳୮ሺ୨ሻ 

൅f୧	୨
ଶ 	 ∗ varሺBO୧	 ୱ୳୮ሺ୨ሻሻ 	൅ ∑ ሺh୧	୨	୩ ∗ ൫1 െ h୧	୨	୩൯ 	∗ 	BO୩	୨୩	∈	ୗ୅ሺ୨ሻ ൅ h୧	୨	୩

ଶ 	∗ varሺBO୩	୨ሻሻ	             (8)        

Finally, expression of the Expected Backorders (EBO) as the measure of system performance is given by the following 
equations: 

BO୧	୨	 	ൌ ෍ ሺx െ Sሻ ∗ Pሺx ൐ ܵሻ 	ൌ෍ሺx െ Sሻ ∗ Pሺx ൐ ܵሻ െ෍ሺx െ Sሻ ∗ Pሺx ൐ ܵሻ				
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୶ୀ଴ 				ୗ

୶ୀ଴
ஶ
୶ୀ଴  	(9)        

This is an explicit part of the objective function which seeks to minimize the sum of expected backorders at the 
downstream bases. The equation 9 shows that BO୧	୨	 decreases whenever there is an increase of stock level S of item i. 
Therefore, the problem 3 may be solved by using a greedy heuristic method according to the following steps. First, an 
initial base stock level is set for each item i at all bases.   The corresponding Expected backorders and investment cost 
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C are computed. Since increase of S leads to a decrease of BO, the reduction in sum of expected backorder per invested 
dollar is calculated when only Si is increased by one at base j. This sum expected backorder reduction per invested 
dollar is denoted by the Δ୧	୨	. 

Δ୧	୨	 ൌ
∑ ∑ ୆୓౟	ౠ	ౠ౟ ሺୗሻି	∑ ∑ ୆୓౟	ౠ	ౠ౟ ൫ୗାୣ౟	ౠ	൯

ୡ౟	
												             (10)        

Where:  e୧	୨	 is a matrix with all elements equal to zero, except for element i,j which is equal to 1. 

The increase by one of item i at base j leading to the maximum Δ୧	୨	 is selected for stock replenishment. In addition, this 
replenishment will increase the holding stock cost C by ci. This procedure is carried out until the budget is reached.  

FINITE REPAIR CAPACITY 

The underlying assumption in the above model is that repair capacity is infinite and as a result, the repair shops are not 
considered as a decision variable. Díaz, et al. (1997) first relax this assumption by considering limited repair facilities 
only at the central base. Other researchers tried to extend the METRIC method to study the impact of finite capacity, 
Aboud (1996), Sleptchenko et al., (2002), Kim et al. (2000).  They have shown that limited capacity has a considerable 
effect on system performance for a single indenture and one or two-echelon repair network.  

On the other hand, queuing theory has been the solution for range of practical problems in telecommunication, 
manufacturing and computer systems. Then, it is obvious that the more suitable way to manage spare parts considering 
also queuing network approach. There is an extensive literature on queuing theory (). The M/G/K queuing system is 
one of the most used models for multi-server systems. The symbol M means that the jobs arrive according to a Poisson 
process with rate λ	; the symbol G assumes that service time is independent and identically distributed random variables 
having a general distribution and  K refers to the number of identical servers working with a First-Come-First-Serve 
(FCFS) policy. Any job received immediately service only when a free server exists, otherwise it waits in the FCFS 
queue.  

In practice, repair shops are generally run by a limited quantity of equipment and multi-skilled crew that are able to 
handle at the same time a certain number of repair jobs. This gives rise to multi-server configuration, where failed items 
arriving with Poisson process are either in the queue or in service.  Therefore, failed items in repair shops are modelled 
using M/G/K queuing theory.  

The mean and variance of the number of items in the repair shops are given by the following approximations based on 
(Whitt, 1983, 1993): 

EሺNሻ ൌ λ ∗ ቂቀ
ଵାେమ

ଶ
ቁ ቀ

୮బ
୩∗ஜ
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VሺNሻ ൌ EሺNଶሻ െ EሺNሻଶ																												       (12) 

Where: 
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୉ሺ୒ሻమ

୉ሺ୒౉/౉/ేሻమ
																							     (13) 

E൫N୑/୑/୏൯ ൌ k ∗ ρ ൅
஡∗ሺ୩∗஡ሻౡ

ሺଵି஡ሻమ∗୩!
		p଴       (14) 

E൫N୑/୑/୏
ଶ ൯ ൌ k ∗ ρ ∗ ቀ1 ൅

ሺ୩∗஡ሻౡ

ሺଵି஡ሻ∗୩!
		p଴	ቁ ൅

ሺౡ∗ಙሻౡ

ሺభషಙሻ∗ౡ!
		୮బቈଵା஡∗ቆଵି

ሺౡ∗ಙሻౡ

ሺభషಙሻ∗ౡ!
		୮బ	ቇ቉

ሺଵି஡ሻమ
		൅ 		EሺN୑/୑/୏ሻଶ																							  

      (15) 

Where: 

p଴ 	ൌ 	 ቎෍
ሺk ∗ ρሻ୨

j!

୩ିଵ

୨ୀ଴

൅
ሺk ∗ ρሻ୩

ሺ1 െ ρሻ ∗ k!
቏

ିଵ

 

k number of servers at the repair shop,  
μ service rate of each server, 
λ	୧ arrival rate of failed item i, 
λ ൌ ∑λ୧	  arrival rate at the repair shop, 

ρ ൌ
஛

୩∗ஜ
	  utilization of the repair shop, 

S  service time at the repair shop, EሺSሻ ൌ
ଵ

ஜ
 

N   number of items at the repair shop, 
Q number of items in queue at the repair shop, 



W waiting queue time at the repair facility, 

C, coefficient of variation for random variable	ܥ ൌ
୚ୟ୰ୟ୧୬ୡୣ

୫ୣୟ୬మ
 

P	୬ probability that there are n items at the repair shop. 
 

These first two moments concern only items under repair service, however, the repair time includes as well the waiting 
time in the queue when servers are full. The waiting time is, in turn, presented by another random variable ܳା ൌ Q/Q ൐
0	 (the conditional queue length given that the queue is not empty).  Its mean and variance are given by: 

ሺܳାሻܧ ൌ EሺQሻ/pሺQ ൐ 0ሻ ൌ ቂEሺNሻ െ
஛

ஜ
ቃ /pሺQ ൐ 0ሻ           (16)        

Where : 

pሺQ ൐ 0ሻ ൎ ρ ∗ pሺW ൐ 0ሻ ൌ 	ρ ∗ min	ሺπ, 1ሻ  

π ൌ ρଶ ∗ πୟ ൅ ሺ1 െ ρሻ ∗ πୠ	  

πୟ ൌ minቐ1,
ଵି஍ቆ

൫భశి౩
మ൯∗ሺభషಙሻ√ౡ

ి౗
మశి౩

మ ቇ

ଵି஍ቀሺଵି஡ሻ√୩ቁ
p൫W୑/୑/୏ ൐ 0൯ቑ ൌ p൫W୑/୑/୏ ൐ 0൯	  

πୠ ൌ minቐ1,
ଵି஍൬

మሺభషಙሻ√ౡ
భశి౩

మ ൰

ଵି஍ቀሺଵି஡ሻ√୩ቁ
p൫W୑/୑/୏ ൐ 0൯ቑ	  

p൫W୑/୑/୏ ൐ 0൯ ൌ 	ρ  

 

Φሺ… ሻ	is	a	cumulative	function	of	standard	normal	distribution 

The term πୟ is equal to p൫W୑/୑/୏ ൐ 0൯ ൌ ρ since arrival time is assumed to be a Poisson process for which mean2 = 

variance =	λଶ and the coefficient of variation ܥ ൌ
୚ୟ୰ୟ୧୬ୡୣ

୫ୣୟ୬మ
ൌ 1. 

The variance of waiting time Q can be obtained by computing its coefficient of variationܥொశ	: 

 

ە
ۖ
۔

ۖ
ۓ 	ொశܥ

ଶ ൌ 	
ଵ

ாሺொశ	ሻ
െ

୮ሺ୕வ଴ሻ

୮ሺ୛வ଴ሻ
ሺܥ஽

ଶ ൅ 1ሻ

஽ܥ
ଶ ൌ 	2 ∗ ߩ െ 1 ൅ 4 ∗ ሺ1 െ ሻߩ

ௗೞ
య

ଷ∗ሺ஼ೞ
మାଵሻమ

݀௦ଷ ൌ ൜
3 ∗ ௦ଶܥ ∗ ሺܥ௦ଶ ൅ 1ሻ							݂݅		ܥ௦ଶ ൐ 1	

ሺ2ܥ௦ଶ ൅ 1ሻ ∗ ሺܥ௦ଶ ൅ 1ሻ							݂݅		ܥ௦ଶ ൏ 1

     (17)        

Finally, backorders given by equation (9) can be approximated based on the first two moments of the numbers of items 
in the pipeline. The common technique to obtain this is set by Adan et al. (1996). Based on this approximate, the 
probability distribution for the pipeline P(X>0) is fitted on the first two moments of   negative binomial, Poisson or 
mixed two geometric distribution.   

THE ALGORITHM FOR CALCULATING OPTIMUM SPARE PART INVENTORY 

On the basis of the mathematical expressions (10), the optimization algorithm has been defined as the maximization of 

the quotient of the backorders BO to cost increment, i.e., Δ୧	୨	 ൌ
∑ ∑ ୆୓౟	ౠ	ౠ౟ ሺୗሻି	∑ ∑ ୆୓౟	ౠ	ౠ౟ ൫ୗାୣ౟	ౠ	൯

ୡ౟	
. This criterion function is 

followed during each iteration step made for identifying the spare part which should be added to the stock. The constraint 
is that the total cost of spare does not exceed the allowed budget.  

The algorithm provides efficient solutions S1,0 , S2,0, S3,0, …, Si,j, … at all repair shops and for all system enclosed items. 
Throughout the algorithm Si,j, denotes generated efficient solution item i at the echelon j, C(Si,j,) stands for the 
corresponding spare part cost  and BO(Si,j,) refers to the corresponding expected number of backorders. The algorithm 
ends when there is no longer any efficient solution with C ≤ budget. The stock allocation is obtained by using the 
following iteration algorithm: 

 Step 0: since the optimisation procedure of the problem (3) is a greedy heuristic, a prerequisite of this procedure 
is the function backorder BO against the cost C should be convex. Rustenburg et al, (2002) have examined the 
effect of initial stock on the curve convexity and they found that this stock should be set equal to ௜ܵ	௝ ൌ



݀݊ݑ݋ݎ ቀλ୧	୨ ∗ 	 rt୧	୨ ∗ 	 r୧	୨ ൅ 	λ୧	୨ ∗ 	O୧	୨ ∗ 	൫1 െ r୧	୨൯ቁ	 and  ௜ܵ	଴ ൌ ଴	൫λ୧݀݊ݑ݋ݎ ∗ 	 rt୧	଴ ∗ 	 r୧	଴ ൅	λ୧	଴ ∗ 	O୧	଴ ∗ 	 ሺ1 െ r୧	଴ሻ൯	 
at the depot base.  

 Step 1: Stock level Si,j is increased by 1 for all i and all j. 

 Step 2: the expected numbers of backorders BO(Si,j) are calculated.  

 Step 2: The mean and the variance of waiting time and service at repair shop are calculated. 

 Step 3: The mean and the variance of pipeline value are calculated. 

 Step 4: Fit a discrete distribution to mean and variance of pipelines assuming that their constituents are 
uncorrelated. 

  Step 5: the expected numbers of backorders BO(Si,j) are calculated.  

 Step 6: the quotients Δ୧	୨	is calculated 

 Step 7: the pair (i,j) leading to the highest value of Δ୧	୨	 is selected. 

 Step 8: Stock level Si,j is increased by 1 for the selected (i,j) 

 Step 9: if the criterion stock cost C ≤ budget is satisfied then go to step 1, otherwise stop. 

For each generated solution Si,j is different  from the previously generated solution in just one component. Δ ൌ
୼୆୓

୼େ
ൌ

ୢୣୡ୰ୣୟୱୣ	୧୬	୆୓൫ୗ౟,ౠ൯୧୤	ୗ౟,ౠ	୧ୱ	୧୬ୡ୰ୣୟୱୣୢ	ୠ୷	ଵ

୧୬ୡ୰ୣୟୱୣ	୧୬	େሺୗ౟,ౠሻ	୧୤	ୗ౟,ౠ୧ୱ	୧୬ୡ୰ୣୟୱୣୢ	ୠ୷	ଵ
.  Therefore, in each of the above steps, the increase the stock  Si,j by 1 should generate 

marginally the largest decrease of BO(s) per invested dollar. 

COMPUTATIONAL EXPERIENCE  
The main purpose of our experiments is to obtain a curve for availability and spare pooling cost. The proposed algorithm 
is written in Matlab and the experiments are performed on a Pentium (…..) compatible PC system. The data for the 
experiment concerns gas turbines depicted in the figure  4. This system is installed either in boosting gas stations or in 
some gas power plant and will be only considered by element structure presented in figure 3. The equipment is divided 
into six main subsystems: trunnion, air inlet, compressor, combustion, turbine and turning gear subsystem. Those 
subsystems have their enclosure components performing specific tasks in connection with the subsystem main function.  

 

Figure 3 : Gas Turbine Element Breakdown Structure 

Hence the total number of pare under study is 18 parts. We first consider the two examples with infinite and limited 
repair facilities. The input data for these examples are shown in Table 1. The different service times we considered was 
based on the average response time, defined as the average time it takes to repair or to receive a spare part after a failure 
is reported. 

Table 1 : Input data ( is given in failures per year; Rt, and Ot in years) 

 

First of all, the greedy approach optimization as described above has been applied by considering infinite repair capacity 
and the problem solution was obtained until the     availability was reached 99.99%. In this example, 666 possible 
solutions have been examined and the final result when inventory cost attains the budget limit is shown in the table 2. 
Besides, all these possible solution represent the optimal pairs (inventory cost C, system availability A) for which any 

Gas Turbine

Trunnion
support

air inlet 
system

compressor
Combustion 
system

Turbine
Start‐Up & 
Turning Gear

Journal 
Bearing

Casing 
system

Blade 
system

Shaft
Extraction 
system

Trust 
Gearing

Vane 
system

Turbine 
cylinder

Shaft

Blades
Radial 
Bearing

Exhaust

Parts : 1 to 6

Parts : 7 to 18

Item Part1 Part2 Part3 Part4 Part5 Part6 Part7 Part8 Part9 Part10 Part11 Part12 Part13 Part14 Part15 Part16 Part17 Part18

 8 9 5 4 4 7

repair probability R 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Repair time Rt 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

order & ship  time Ot 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

q 0 0 0 0 0 0 0.17  0.34 0.10 0.21  0.09 0.10  0.20 0.20  0.09 0.21 0.10 0.20

part cost ci 298 298 589 486 884 283 282 273 267 266 249 241 240 231 229 218 216 205



invested dollar have led to the maximum increase in system availability. These pairs constitute a so-called spare part 
investment versus availability curve, are graphically depicted in Fig. 5. For example, the figures in the table 2 correspond 
to the optimal provision of spare part within repair shops (in this case there 6 bases to be supplied) when system 
availability attains 99.99%. 

Table 2: Spare part allocation throughout repair network 

 

Once the provision problem has been solved, the experiments were performed to evaluate the effect of various repair 
shop capacities on both system availability and inventory costs. From the fig. 5, it is clear that additional investment in 
repair capacity (increasing the number of repair servers) results in a decrease in the inventory cost for the same 
availability values. In the case of infinite repair capacity, the blue line represents the asymptote from which no further 
reduction in inventory cost will achieve by increase in repair capacity. Besides, this asymptote is almost identical to that 
obtained with 4 repair servers. Therefore, there is not worth to envisage more than 4 repair servers per repair shop. 

 

Figure 4 : System availability vs spare part costs. 

For a given availability values, asset managers can decide whatever to repair failed items or to possess enough spares 
for immediate replacements. For instance, the difference inventory investment (C3-C1) for the same availability may 
increase to 27%. Alternatively, the benefit in inventory investment is approximately 3000 when there are more 
additional repair servers. Therefore, the question is: given the availability threshold value, what is the cost effective 
investment decision in reapir capacity vs. inventory? The answer is displayed in the table 6 in, which the differences in 
spare part costs for an equal availability.  

 

CONCLUSION AND FUTURE WORKS 
This study highlights the advantage that maintenance efficiency could be achieved with the adoption of integrated 
logistics support elements. More specifically, in spare parts management and in case identical equipment can be installed 
in different geographical areas requiring very close repair services.   A multi-echelon repair network is considered in 
this paper that includes a central depot, and many field bases. The results discussed show the impact of spare part 
modelling on the desired system availability. It was demonstrated that the queuing theory could provide an opportunity 
to better estimate the required spare parts and especially if the repair shops have a limit capacity. The study also reveals 
the trade-off between the spares inventory and investment in repair facilities. In an intensive system industry like 
petroleum industry, it may be a worthwhile policy to reduce the capital investment in repair spare by expediting engine 
overhauls by putting more manpower on the jobs. Such a policy could in turn provide more employment to the people.  

Item Part1 Part2 Part3 Part4 Part5 Part6 Part7 Part8 Part9 Part10 Part11 Part12 Part13 Part14 Part15 Part16 Part17 Part18

base 3 4 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1

loc1 7 7 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1

loc2 7 7 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1

loc3 7 7 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1

loc4 7 7 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1

loc5 7 7 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1
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