Gas- und Wärme-Institut Essen e.V.

Impact of Changing Natural Gas Quality on Industrial Combustion Processes

IGRC 2014, Copenhagen

Jörg Leicher, Anne Giese, Klaus Görner, Matthias Werschy, Steffen Franke, Hartmut Krause, Holger Dörr

- Industrial applications (excluding power generation) account for about 1/3 of Europe's consumption of natural gas.
- Natural gas is the premier means to provide process heat in many industries, from the food industry to high temperature processes in glass, ceramics and metals manufacturing.
- Manufacturing processes have very high demands for efficiency, stability, pollutant emissions and of course product quality. This usually requires a tight control of furnace conditions.
- Constant natural gas qualities are a significant locational advantage when running sensitive thermal manufacturing processes.

- The international markets for natural gas are changing for a variety of reasons:
 - Decline of L-Gas from European sources
 - Increasing importance of imports (Russia, Middle East, LNG)
 - New gases: biogas, LNG, possibly H₂ from power-to-gas applications in the near future
 - "Unbundling", short term supply contracts
 - Harmonization of European gas quality standards (prEN 16726)
- These changes bring a number of benefits to both private and industrial gas consumers, but they also mean that end users will face greater fluctuations in gas quality at any given location within the supply grid.
- For many industrial users, this is a new situation, for which they are often illprepared. Some are not even aware of the changing situation.

Gas Composition Measurement near Leipzig/Halle, 2011

- The potential impacts of changing gas qualities on industrial combustion processes in Germany were investigated in a DVGW-funded research project.
- Both experiments with semi-industrial burner test rigs and CFD analysis were used to examine a number of industrial applications.
- Various scenarios and control strategies were simulated.
- The impacts of gas quality changes on various gas-fired manufacturing processes were assessed.

CFD Case Study: Glass Melting Furnace

Regenerative Glass Melting Furnace

Source: C. P. Ross; G. L. Tincher; M. Rasmussen: Glass melting technology: a technical and economic assessment, GMIC, 2004

Impressions from the Interior of the Furnace

Source: HVG

Operating Parameters (Reference Case):

- Load Burner 1: 2000 kW
- Load Burner 2: 2000 kW
- Air Ratio: 1.05
- Gas Temperature: 20 °C
- Air Temperature: 1300 °C
- Glas Melt Surface Temperature: Profile

Approach:

- Test gases at the extremes of German gas quality code DVGW G260 were defined
- Process was adjusted for reference gas and then supplied with another test gas
- Steady CFD simulations were used to examine the impact of a gas quality change
- Various furnace control strategies were investigated

Scenario I

- Fuel gas composition changes from H-Gas Ref._GWI to H-Gas 1_GWI or H-Gas 3_GWI... an oxygen sensor detects the change.
- $\circ \quad \mbox{Volume flow of air is adapted for} \\ \mbox{constant } \lambda.$
- But: volume flow of fuel remains constant !

Superior Wobbe Index [kWh/m³]

Gas Type	H _{i.n} [kWh/m³]	Q _{Burner} [kW]	Ρ _{n.Gas} [kg/m³]	V _{n.Gas} [m³/h]	Air _{min} [m³ _{Air} /m³ _{Fuel}]	λ [-]	V _{n.Air} [m³∕h]
H-Gas RefGWI	10.436	4000	0.8004	383.3	9.99	1.05	4021
H-Gas 3_GWI	11.884	4554	0.9043	383.3	11.27	1.05	4536
H-Gas 1_GWI	9.114	3494	0.7110	383.3	8.65	1.05	3482

Scenario I: Temperatures above the Glass Melt

Scenario I: Total Heat Fluxes into the Glass Melt

Scenario II

- Fuel gas composition changes from H-Gas Ref._GWI to H-Gas 1_GWI or H-Gas 3_GWI... and no one notices !
- Volume flows of **both** fuel and oxidizer remain constant.
- Definitely a worst case scenario !

Superior Wobbe Index [kWh/m³]

Gas Type	H _{i,n} [kWh/m³]	Q _{Burner} [kW]	ρ _{n,Gas} [kg/m³]	V _{n,Gas} [m³∕h]	Air _{min} [m³ _{Air} /m³ _{Fuel}]	λ [-]	V _{n,Air} [m³/h]
H-Gas RefGWI	10.436	4000	0.8004	383.3	9.99	1.05	4021
H-Gas 3_GWI	11.884	4554	0.9043	383.3	11.27	0.93	4021
H-Gas 1_GWI	9.114	3494	0.7110	383.3	8.65	1.21	4021

Total Load	kW	4000	Total Load	kW	4554		Total Load	kW	3494
Air Ratio	-	1.05	Air Ratio	-	0.93		Air Ratio	-	1.21
CO ₂	Mole-%	11.38	CO2	Mole-%	11.11		CO ₂	Mole-%	9.50
N ₂	Mole-%	87.39	N ₂	Mole-%	85.86		N ₂	Mole-%	86.34
02	Mole-%	1.23	02	Mole-%	0.00		02	Mole-%	4.16
H ₂	Mole-%	0.00	H ₂	Mole-%	1.18		H ₂	Mole-%	0.00
СО	ppm	11	СО	ppm	18526)[СО	ppm	3
NO_x @ 3 % O ₂	ppm	3460	NO _x @ 3 % 0	D ₂ ppm	1670		NO _x @ 3 % O ₂	ppm	2850
0	200	400	600 80	00 1000	1200	14(0 1600 1	800 201	0 0

CO_{dry} [ppm]

Scenario III

- Fuel gas composition changes from H-Gas Ref._GWI to H-Gas 1_GWI or H-Gas 3_GWI... fuel composition is constantly monitored (PGC).
- $\circ \quad \mbox{Volume flows of air and fuel are} \\ \mbox{adapted for constant } \lambda \mbox{ and burner} \\ \mbox{load}. \\$
- Technologically, the most sophisticated solution... but expensive!

Superior Wobbe Index [kWh/m³]

Gas Type	H _{i,n} [kWh/m³]	Q _{Burner} [kW]	ρ _{n,Gas} [kg/m³]	V _{n,Gas} [m³/h]	Air _{min} [m³ _{Air} /m³ _{Fuel}]	λ [-]	V _{n,Air} [m³∕h]
H-Gas RefGWI	10.436	4000	0.8004	383.3	9.99	1.05	4021
H-Gas 3_GWI	11.884	4000	0.9043	336.6	11.27	1.05	4536
H-Gas 1_GWI	9.114	4000	0.7110	438.9	8.65	1.05	3482

Scenario III: Total Heat Fluxes into the Glass Melt

Test Rig Measurements

GWI Test Rig Measurements: NO_x along Central Axis

GWI Burner Test Rig: all measurements performed at P = 200 kW, λ = 1.15, T_{air} = 200 °C

DBI Test Rig Measurements: Effect of Gas Switch on CO

Industry	Process	Efficiency	Safety (Emissions and Thermal Overload)	Product Quality
	When switching from lower to higher W	obbe Index (maximum pos	sible range according to D	VGW G 260)
Lt.	boilers			
Неа	luminous radiant heaters			
	direct and indirect drying			
λĒ	pre-heating (metals)			
letallurç	thermochem. heat treatment			
	zinc coating			
2	melting (non-ferrous metals)			
ics	calcination			
ram	brick & tiles manufacturing			
Ce	porcelain firing			
Glass	glass melting (float)			
	glass melting (container), feeder			
	glass finishing treatment			
Other	chemical engineering, plastics			

no intervention required intervention possibly required intervention required

- The issue of fluctuating qualities of natural gas in the grids will play a bigger role for industrial gas consumers in the years to come. It is yet unclear how local gas quality changes will affect many industrial applications as they are typically not designed for such fluctuations.
- DVGW funded a research project to investigate and assess the susceptibility of various industrial gas-fired applications to gas quality changes. Some results were presented.
- There is no single way to prepare a thermal processing plant to fluctuating gas qualities. Every process is different and requires its own tailor-made solution.
- Advanced measurement and furnace control technologies can help mitigate the impact of fluctuating gas qualities. These may be significant investments especially for small and medium-sized enterprises.

DBI, EBI and GWI gratefully acknowledge the support by DVGW and our industrial partners in the supervisory committee.

The final report of the project (in German) is available at the GWI website: <u>www.gwi-essen.de</u>

Gas- und Wärme-Institut Essen e.V.

O

Thank you for your attention !

Dr.-Ing. Jörg Leicher Gas- und Wärme-Institut Essen e.V. Hafenstraße 101 45356 Essen, Germany Tel.: +49 (0) 201 3618 – 278 leicher@gwi-essen.de