IGRC 2014-Cross-cutting_Advances in Gas Processing

Highly Permeable Polymers of Intrinsic Microporosity (PIM-1)based Flat Dense and Hollow Fiber Membranes for Gas Separation

Wai Fen <u>Yong</u>, Tai-Shung Chung* Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.

19 September 2014

Outline

- Challenges and opportunities
- Our approach
- Research works
 - Miscibility study on dense membranes
 - Scale up to hollow fiber membranes
 - Properties alteration: from CO₂- to H₂-selective
- Summary

Crude Oil Price

Spot Prices

- Increase in energy demand •
- Higher in crude oil price •
- Depletion of crude oil
- U.S. Energy Information Administration, released on Aug 4, 2014

Energy Consumption by Fuels

• U.S. Energy Information Administration, International Energy Outlook 2013

Hydrogen as Alternative Energy Source

- Clean energy carrier
- Hydrogen production:

Steam reforming of natural gas coupled with water-gas shift reaction:

 $CH_4 + H_2O \xrightarrow{Catalyst} 3H_2 + CO$

 $CO + H_2O \rightarrow H_2 + CO_2$

Co-product CO₂ need to be removed

Contaminant CO₂ Need to be Removed

Why Membrane Separation?

- Low capital and operating costs
- High energy efficiency

Membrane Separation

Solution Diffusion

Trade-off Relation

High permeability and selectivity is desirable

L.M. Robeson, J. Membr. Sci. 320 (2008) 390-400.

New Class of Material

Polymer of Intrinsic Microporosity (PIM-1)

- $\blacktriangleright \quad \text{Large surface area (600 900 m^2g^{-1})}$
- ➢ Rigid and contorted structure with no rotational freedom in the backbone → high fractional free volume
- Superior gas permeability, especially CO_2 (~4000 barrer)
- ► Moderate gas selectivity, $\alpha_{CO2/CH4} = 14$, $\alpha_{CO2/N2} = 20$
- Soluble in tetrahydrofuran, dichloromethane

P.M. Budd et al., Adv. Mater. 16 (2004) 456-459. N.B. McKeown et al., International patent, (2005) WO05012397.

Our Approach: Polymer blends

Polymers of Intrinsic Microporosity (PIM-1)

High permeability^{1,2,3}
 H₂ (~2920 barrer)
 CO₂ (~4030 barrer)

- High thermal stability
- Good processibility
- High selectivity⁴

$$\succ \alpha_{CO2/CH4} = 34$$

$$\succ \alpha_{O2/N2} = 6.6$$

➤ Low-to-moderate selectivity
➤ $\alpha_{CO2/CH4} = 11.5$ ➤ $\alpha_{O2/N2} = 3.6$

- Low permeability
 CO₂ (~6.5 barrer)
 - \succ O₂ (~1.7 barrer)

P.M. Budd et al., Adv. Mater. 16 (2004) 456-459.
 N.B. McKeown et al., International patent, (2005) WO05012397.
 C. Liu and S.T. Wilson, US Pat 7,410,525 B1 (2008).
 A. Bos et al., J. Polym. Sci. B: Polym. Phys. 36 (1998) 1547-1556.

RW1: Polymer blends

Appearance of the Dense Membranes

^{*} wt% PIM-1 in Matrimid

- Translucent for 30 wt % PIM-1 in Matrimid blend.
- Opaque for 50-70 wt% PIM-1 in Matrimid blend.

RW1: Polymer blends

Effects of Blend Ratio under Miscroscope

* wt% PIM-1 in Matrimid

RW1: Polymer blends

Changes on Glass Transition Temperature (T_g)

 \succ T_a shift towards each other \rightarrow partial miscible

RW1: Polymer blends Interaction between PIM-1 and Matrimid

PIM-1

Matrimid

RW1: Polymer blends **Pure Gas Performance for CO₂/CH₄ Separations**

wt% PIM-1 into Matrimid, permeability increases by 25% and 77%, respectively without compromising its CO₂/CH₄ selectivity.

CO₂/CH₄ Tradeoff Relations

- Goes along with upper bound line when PIM-1 loading increases.
- > For mixed gas tests, 30 wt% PIM-1 in Matrimid membrane has a CO_2 permeability of 50 Barrer and a CO_2/CH_4 selectivity of 31.

*L.M. Robeson, J. Membr. Sci. 320 (2008) 390-400.

O₂/N₂ Tradeoff Relations

Incorporation of a small amount (5-30 wt% of Matrimid) drives the overall gas separation performance approaches closes or surpasses the upper bound.

*L.M. Robeson, J. Membr. Sci. 320 (2008) 390-400.

W2: Hollow fibers Why PIM-1/Matrimid Hollow Fibers

Polymer blends	Permeabili	ty (Barrer ^{a,b})	I	Ideal Selectivity				
	O_2	CO_2	O_2/N_2	CO_2/N_2	$\rm CO_2/\rm CH_4$			
Pure gas test (35 °C, 3.5 a	<u>utm)</u>							
Matrimid	2.1 ± 0.1	9.6 ± 0.7	6.4 ± 0.6	30 ± 2.5	36 ± 0.4			
PIM-1/Matrimid (5:95)	2.6 ± 0.2	12 <u>+</u> 0.7 <mark>↑2</mark>	<mark>5% 6</mark> .6 <u>+</u> 0.1	29 <u>+</u> 2.7	35 <u>+</u> 0.5			
PIM-1/Matrimid (10:90)	3.4 ± 0.0	17 <u>+</u> 0.6 <mark>↑7</mark>	<mark>7% 6</mark> .1 <u>+</u> 0.4	30 ± 0.9	34 <u>+</u> 1.6			
PIM-1/Matrimid (15:85)	4.4 <u>+</u> 0.3	21 <u>+</u> 0.8 <mark>↑1</mark> 1	<mark>18% 5</mark> .9 <u>+</u> 0.5	28 <u>+</u> 0.7	32 <u>+</u> 1.3			

^a 1 Barrer = 1×10^{-10} cm³ (STP)cm/cm²s cmHg.

W.F. Yong et al., J. Membr. Sci. 407–408 (2012) 47–57.

Schematic Diagram for Hollow Fiber Spinning

Effect of Bore Fluid Concentration on Inner Surface Morphology

* PIM-1/Matrimid (15:85)

Increase NMP content, inner surface becomes more porous

Dense-selective Layer Thickness

ultrathin dense layer thickness

Effect of PIM-1 Concentration on Gas Separation Performance

Effect of Different Post-treatment Conditions on Gas Separation Performance

* is the pristine fibers without post-treatment.

CO₂/CH₄ Pure and Mixed Gas Performance

	Pure gas ^a					Binary gas ^a			
Hollow fibers ID	Perm (Gl	eance PU)	S	Selectivity	Perm (G	neance PU)	Selectivity		
	CH ₄	CO ₂		CO ₂ /CH ₄	CH_4	CO ₂	CO ₂ /CH ₄		
Matrimid	2.5	86.3		34.5	-	-	-		
PIM-1/Matrimid (5:95)-1B	5.4	153.4	+78%	28.4	-	-	-		
PIM-1/Matrimid (10:90)-2B	8.1	212.4	+146%	<mark>6</mark> 26.2	6.9	159.7	23.1		
PIM-1/Matrimid (15:85)-3A	7.1	243.2	+182%	<mark>6</mark> 34.3	6.6	188.9	28.8		

^a After silicon rubber coating.

Pure gas and binary gas conducted at ambient temperature with 1 atm and 2 atm, respectively.

Comparison with Commercial Materials

Research Work 3: PIM-1/ Matrimid and Diamine Modified Membranes from CO_2 selective to H_2 -selective

Cross-linking Mechanism

Effect of Diamine Structure on Pure Gas Performance

Membranes ID	Permeability (Barrer) ^{a,b}				Ideal Selectivity						
	H ₂	O ₂	N_2	CH ₄	CO_2	H_2/N_2	O ₂ /N ₂	CO_2/N_2	CO ₂ /CH ₄	H_2/CH_4	H ₂ /CO ₂
PIM-1	2918	735	192	268	3825	1 5 .2	3.8	19.9	14.3	10.9	0.8
PIM-1/Matrimid (90:10)	2118	575	144	173	2855	1 <mark>4</mark> .7	4.0	19.8	16.5	12.2	0.7
PIM-1/Matrimid (90:10) membranes modified with											
2 nr EDA	2783	930	209	5/4	4572	10.5	5.5	17.0	12.2	/.4	0.0
2 hr TMEDA	1776	326	62.6	63.4	1157	28.4	5.2	18.5	18.2	28.0	1.5
2 hr pXDA	823	124	20.8	17.2	388	39.6	6.0	18.6	22.5	47.8	2.1
2 hr BuDA	1015	136	23.0	22.0	341	44.1	5.9	14.8	15.5	46.1	3.0
2 hr TETA	395	32	4.3	3.4	41	91.9	7.4	9.5	12.1	116.2	9.6
^a 1 Barrer = 1×10^{-10} cm ³ (STP)cm/cm ² s cmHg. \uparrow 525% \uparrow 85%								↑	852%	↑ 127 1	
^b 35 °C and 3.5 atm											

Highest degree of cross-linking

Н NH_2 ŃΗ_N H₂N Η

Eth**Fyletleyliameine**ramine (ED(AT)ETA)

Cross-sectional Morphology RW3: H₂-selective

32

Benchmarking with Robeson Upper Bound

33

Summary

\succ 1st work:

- Incorporation of PIM-1 in Matrimid increases permeability significantly.
- Matrimid rich membranes suitable for natural gas separation (e.g. 5-10 wt% of PIM-1 in Matrimid).
- PIM-1 rich membranes competent for air separation (e.g. 5-30 wt% of Matrimid in PIM-1).
- ➢ 2nd work:
 - High flux hollow fiber membranes spun from 5-15 wt% PIM-1 in Matrimid.
 - The CO₂ permeance of the fiber containing 15 wt% PIM-1 displays a greater improvement of 2.8 folds to 243.2 GPU with a CO₂/CH₄ selectivity of 34.3 after silicon rubber coating.
 - Fiber containing 15 wt% PIM-1 has a CO₂/CH₄ selectivity of 28.8 in binary gas test.
- W.F. Yong et al., J. Membr. Sci., 407–408 (2012) 47–57.
- W.F. Yong et al., J. Membr. Sci. 443 (2013) 156-169.
- W.F. Yong et al., J. Mater. Chem. A, 1 (2013) 13914-13925.

Summary (cont')

- \succ 3rd work:
 - The intrinsic properties of PIM-1 membranes tuned from CO₂selective to H₂-selective via blending with Matrimid and crosslinking with diamine.
 - The ideal H₂/CO₂ selectivity of the membrane after modification by 2 hr TETA improved from 0.7 to 9.6 with a H₂ permeability of 395 Barrer.
 - The developed membranes show exceptional separation performance surpassing the present upper bound for H₂/CO₂, H₂/N₂, H₂/CH₄ and O₂/N₂ separations.

- W.F. Yong et al., J. Membr. Sci., 407–408 (2012) 47–57.
- W.F. Yong et al., J. Membr. Sci. 443 (2013) 156-169.
- W.F. Yong et al., J. Mater. Chem. A, 1 (2013) 13914-13925.

Acknowledgements

- National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP 5-2009-5 (NUS grant number R-279-000-311-281))
- Prof. Tai-Shung Chung, Neal
- NUS membrane research lab mates
- http://www.chbe.nus.edu.sg/membrane/

Prof.Chung's Membrane Group National University of Singapore

Thank you