

Optimizing linepack usage and intraday operations of a gas transmission network, a new approach on GRTgaz network

Baptiste Rossi, GDF SUEZ François Martin, Félix de Carpentier, GRTgaz

BY PEOPLE FOR PEOPLE

IGRC 2014, Copenhagen, 17-19 Sept 2014

Contents

■ The complexity of operating a natural gas transmission network

Building HELP : an hourly GPS for the transmission network

Benefits in operations

"crigen

GRTgaz

Balancing rules:

→ Designed to enhance fluidity for shippers, easy to use Every shipper has to balance input and outputs in balancing zones

Balancing rules:

For TSOs: the network is never balanced

TSOs operate a physical network, not a contractual one! Complexity of operating a physical network

Constraints on pressure (safety / security / contracts)

Maintenance issues

Hazards & differences between forecasts and real life!

- Large number of options in a meshed network
- ■Example of GRTgaz

- 32 000+ km / 20 000+ miles of pipes
- 6 supply nodes

(gas from Norway, Algeria, Russia,...)

- 14 storage facilities
- 36 interconnection (28 compression) stations
- Pressures 40-90bar
- Meshed structure

Optimization: a good tradeoff between Safety, Security & OPEXs

Safety & Security : constraints

OPEX : 2 parts : Compression & Flexibility sourcing

→ Solution developed: two tools communicating

MinOPEX:

Optimization of compressions costs on daily scenario (steady state)

Dimensioning compression usage

Large combination of flow patterns / compressions scheme studied

Optimization of linepack usage & flexibility sourcing on hourly basis (transient)

Optimized hourly schedule

Compression configuration is an input

Contents

■ The complexity of operating a natural gas transmission network

■ Building HELP : an hourly GPS for the transmission network

Benefits in operations

GRTgaz

HELP: an hourly GPS for TSOs

- Comparison of the property of the comparison of the comparison
- → defining « here » and « destination »

Current state: reconstructed in real time from sensors

→ GRTgaz & CRIGEN: developed accurate reconstruction from 1500+ pressure sensors

Targeted state: linepack target for each pipe

→ Preparing the network for tomorrow

GRTgaz

HELP: an hourly GPS for TSOs

Driving following an optimized trajectory

- « Driving indications » : for each hour
 - Flows at each end of pipes in the network
 - Flows at storage facilities
 - Flows at LNG terminals

Linepack trajectories for pipes and large areas around major cities

→ HELP finds a « way » a « good » way

Finding a way / Finding a good way

- A way : respecting the physical & operational constraints
 - —Pressures at points always within bounds all day long
 - —Contracts with storage facilities / LNG ...
 - —Security margins to cover temporary failures
- → Complex constraints (non linear/non convex Fluid Mechanics equations)

- A good way : multicriteria : minimizing costs
 - —Contracts with storage facilities / LNG ...
 - —Distance to target
 - —Reasonable solutions : eg smooth changing flows
- → There is not one absolute optimal because of multicriteria, it's a trade off

Describing the "ways"/ feasible set : modeling the network

A trajectory = hourly flows at each end of pipes + storages + LNG

Pipeline: the feasible set, steady state computations

Pressure constraints on a pipe :

For a given transmitted flow Q: steady state pressure drop profile

→ What are the limits on linepack to ensure feasibility?

Pipeline: the feasible set, steady state computations

For Q varying: all the steady state feasible set

Real life is transient but "close to steady state"

Conclusion on Algorithm

In order to solve this hourly scheduling problem

A new approach has been developed: Two steps:

- 1- Initialization (steady state computations)
- 2- Optimization phase (transient computations) enhancing solution / finding solution if phase 1 failed providing feasible / proving optimality of initialization

Solutions found in 2 minutes on a PC!!

- → Used during the day to adapt schedule to real life conditions
- → Used on a day ahead mode to prepare the day after and dimension flexibility contracts

Contents

■ The complexity of operating a natural gas transmission network

Building HELP : an hourly GPS for the transmission network

Benefits in operations

"crigen

Benefits in operations

- ■Intraday :
- ■MinOPEX : new compression set up in case of dramatical change
- HELP: new trajectories computed each hour, on demand if needed to help operators decide how to handle the network

Knowing better the limits of the network

Overview of HELP: a global view of the network at a given hour

Specific view: seeing the trajectory in a mesh

Contexte: Supervision - Données: Programmées - Journée observée: 27/08/2014 - Dernier tir: 27/08 17:3

Maille	Nord	*	1	Etat	
		V=1	:	1002 2	
		valeurs exp	Valeurs exprimées en 10^3 m3 Q entrée		
Туре	Nom (sens du flux)	Q max (IM)	(IM) ou IR	Q sortie (IM)	Etat
_ Intermaille	Plateau du Vexin -Moussy >> Cuvilly	1 489	1 235	1 235	
_ Intermaille	Nord 1&2 -Cuvilly >> Taisnières	2 629	1 378	1 366	
_ Intermaille	MNE -Morelmaison >> Taisnières	972	616	616	
_ Intermaille	Lorraines 1&2 -Laneuvelotte >> Taisnières	425	312	220	
■ PIR	Dunkerque -Entrée		1 656		
■ PIR	Quevy - Blarégnies -Entrée		1 980		
■ PIR	B vers H Gournay -Arrêt		0		
■ PIR	B vers H (Taisnières) -Entrée		62		
■ PIR	Adaptateur -Arrêt		0		
■ PIR	H vers B (Taisnières) -Sortie		-50		

"crigen

Conclusion on HELP

Transient optimization in practice, used daily

- ■Whole integrated software:
 - —From reconstruction to desired target
 - —Day ahead preparation based on forecasts
 - —Intraday operations adjustments

Conclusion: GRTgaz optimizes its operations using 2 softwares: MinOPEX & HELP

- ■TODAY at GRTgaz : a combination of two decision help tools :
 - —MinOPEX: Optimized compression schemes on a daily basis
 - —HELP: Optimized linepack usage and flexibility sourcing, on an hourly basis
- → Working together :
- ■MinOPEX: savings at GRTgaz ~ 11 M\$/ (2013 over 73 M\$ of compression costs)
- ■HELP: savings at GRTgaz > 2.5 M\$/year

Thank you for your attention

Questions?

Baptiste Rossi – <u>baptiste.rossi@gdfsuez.com</u>

Meet GDF SUEZ @ Booth 23 in the Conference Hall

