Gas- und Wärme-Institut Essen e.V.

**O** 



## **100 micro-CHP, Bottrop** project, experiences and results

Copenhagen, 18<sup>th</sup> of September 2014 Dr. Johannes Schaffert Michael Schmidt

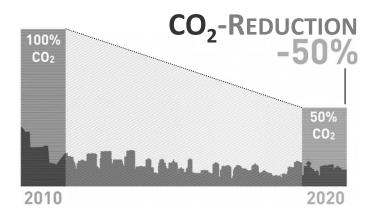
## Gas- und Wärme Institut Essen





#### Gas- und Wärme Institut Essen e. V.

- Legal status: non-profit association
- Founded 1937 by the gas industry
- o 62 members companies
- o 63 employees
- o **Departments** 
  - Research and Development
    - Fuel and Appliance Technology
    - Industrial Combustion Technology
  - o Testing Laboratory
  - Training and Consulting Centre


## **Innovation City Ruhr - Bottrop**

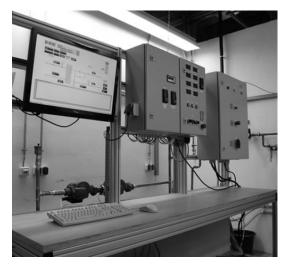




#### InnovationCity Ruhr - Bottrop

- Pilot project
- Representative city within the Ruhrgebiet
- o 70.000 inhabitants
- Transferability of results
- Strongly supported by the citizens




Map adapted from http://www.osnabrueck.de/images\_design/Grafiken\_Inhalt\_Tourismus\_Freizeit/Deutschland\_karte.gif



Technology transfer to a monitored demonstration stage



Die DVGW-Innovationsoffensive. www.dvgw-innovation.de



Laboratory experiments

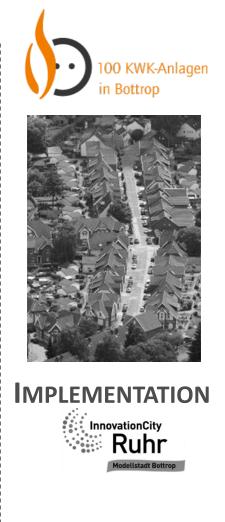


Application oriented experiments in the GWI demonstration house



#### **INCREASING TECHNOLOGY READINESS**

Project




#### Focus on:

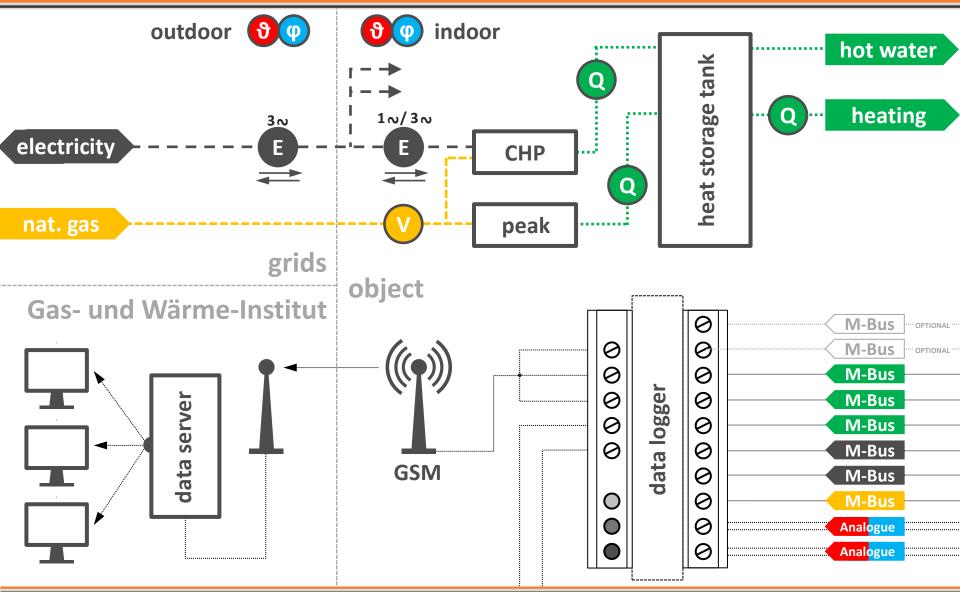
The transferability of results

 $\rightarrow$  Deduction of recommendations for market access

- In InnovationCity, buildings with different structure (size, age, heat demand,...) were selected
- 100 micro CHP units were installed
- Automatic monitoring of operating parameters via GSM
- Analysis of two heating seasons






#### In InnovationCity different micro CHP systems by different manufacturers were installed

- Europe-wide tendering with the goal to achieve a broad technology portfolio
- Selected systems include heat storage and peak load burner

| Pcs. | System                   | Technology | kW <sub>el</sub> | kW <sub>th, CHP</sub> | η <sub>el</sub> |
|------|--------------------------|------------|------------------|-----------------------|-----------------|
| 20   | Brötje EcoGen WGS 20.1   | Stirling   | 1,0              | 5,0                   | 17,6            |
| 14   | Viessmann Vitotwin 300-W | Stirling   | 1,0              | 5,3                   | 17,0            |
| 6    | Viessmann Vitotwin 350-F | Stirling   | 1,0              | 5,3                   | 17,0            |
| 36   | Vaillant ecoPower 1.0    | Otto       | 1,0              | 2,5                   | 26,3            |
| 12   | Vaillant ecoPower 4.7    | Otto       | 4,7              | 12,5                  | 24,6            |
| 10   | CFCL BlueGen             | SOFC       | 1,5              | 0,5                   | 60,0            |
| 2    | CFCL BlueGen Beta 2      | SOFC       | 1,5              | 0,5                   | 60,0            |

Measurement instrumentation | Data flow (ecoPower 1.0)







The system assignment is based on an automated logic as far as possible. Some exclusion criteria and typical workarounds are listed below

- Insufficient **access** to the installation location
  - Doors must enable a feasible transport of the buffer storage
  - ✓ In **many** buildings the door widths have been increased by the applicants
- o Insufficient room height of installation location
  - Room heights must fit the demands of the heat storage tanks
  - ✓ In **some** buildings the room height has been increased accordingly
- Insufficient **space** for installation
- Insufficient dimensioning of chimney
  - The exhaust gas routing differs from manufacturer to manufacturer and partly need well dimensioned chimney cross-selection areas
- Complicated heat distribution lead to increased installation costs



#### Selected typical experiences and issues that occurred during installation

#### o Rarely

- Increased noise emissions due to inaccurate acoustic decoupling
  - ✓ Detection during start-up or by customer feedback
- CHP control settings incomplete (e.g. CHP system deactivated)
  - ✓ Issues can be detected very fast by analysing the monitored data
- $\circ$  Very rarely
  - Challenge to guarantee hot water and heat supply during installation in the heating period (installation between 1 - 5 working days)
    - ✓ Small bridgeable decentralised hot water supply system

#### • Common positive feedback

- Installers: The installation of the different micro CHP systems differs partly to conventional heating systems, but presents no problems
  - ✓ Manufacturer specific trainings had been prerequisite for each installer



The system registration and the corresponding regulatory framework has been identified as one of the main obstacles in Germany

#### Delivery of forms for different recipients

- Notification to the local network operator to provide electricity
- Electronic notification procedure of the BAFA (Federal Office of Economics and Export Control)
- Notification of decentralised generation of electric energy to receive the proceeds
- Customer service: overviews and reminders for required action

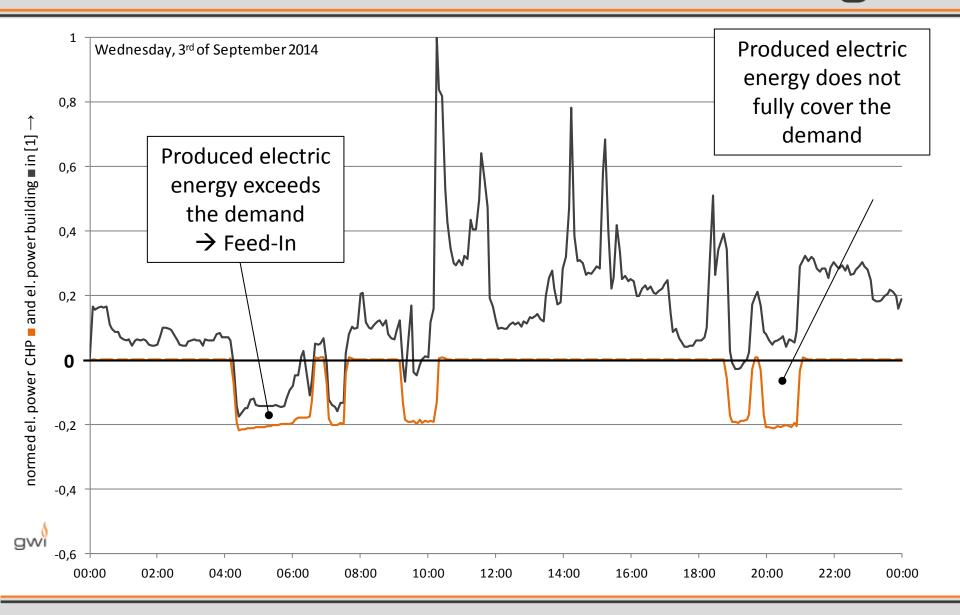
#### Example

- The notification form for the local network operator to feed-in electricity consists of about 20 pages (depending on manufacturer)
  - Customer service: pre-filled and colour highlighted forms including additional data sheets and specific proofs of manufacturer

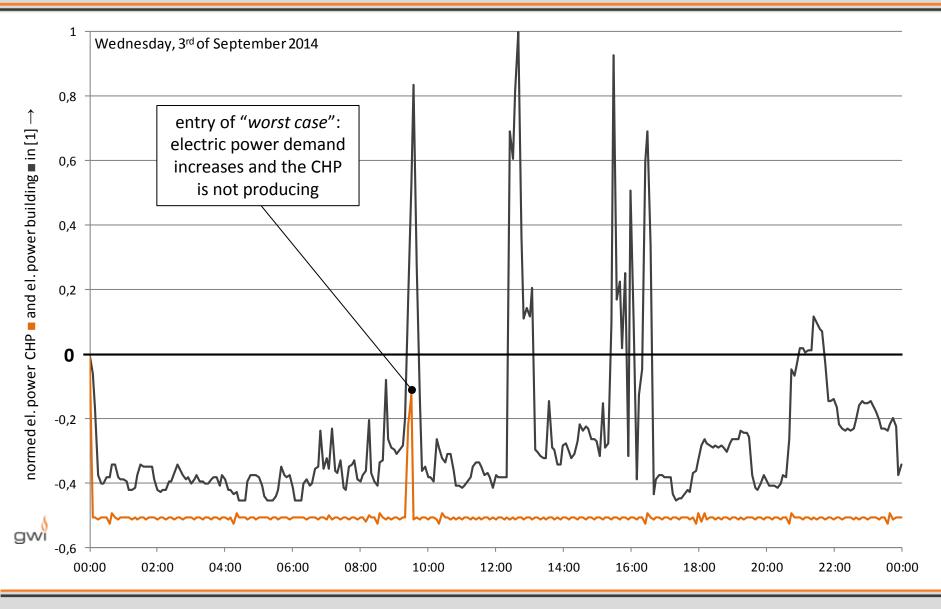


#### object

Object type: twin house Living area: 160 m<sup>2</sup> Year of construction: 1919 inhabitants: 2 Age heating sytem: 24y Energy supply: 5-6 t coal/a


#### Installation

CHP system: *Viessmann Vitotwin 300-W* Installer: *Smit GmbH* date: March 07, 2014 Notes:


 Usage of the former coal bunker for the installation of the CHP system



## results | electric power balance | example I



## results | electric power balance | example II





#### The project is ongoing and will be completed in September 2015

Current tasks are

- Capturing a complete heating period as a basis for analysis
- Collect realistic utilisation rates (deduce e.g. CO2 savings)
- System comparisons (Otto, Stirling, Fuel Cell)
- Extension of theoretical models using Modelica
  - Transient simulations of residential areas regarding potentials of CO<sub>2</sub>-emission reduction by CHP systems integrated in smart grids

#### Outcomes

- Energy demand and unit characteristic database
- Optimise the system "CHP + Periphery"
- General statements regarding the potentials of micro CHP units
- Identification of optimisation potentials regarding technical interaction of systems parts on the one hand and non-technical influences (framework) on the other hand
- Economic and ecologic evaluation
  - For more information please visit: www.100kwk.de

# Thank you very much for your kind attention

Gas- und Wärme-Institut Essen e.V.



Michael Buller Gas- und Wärme-Institut Essen e.V. Hafenstrasse 101 45356 Essen, Germany Tel.: +49 201 3618 - 289 Mail: buller@gwi-essen.de Dr. Johannes Schaffert Gas- und Wärme-Institut Essen e.V. Hafenstrasse 101 45356 Essen, Germany Tel.: +49 201 3618 - 235 Mail: schaffert@gwi-essen.de