Energie mit Zukunft. Umwelt und Verantwortung.

Dynamic pressure control in gas grids for better integration of green gases – a potential analysis in the North of Germany

Main author: Gert Müller-Syring (a)

Co-authors: Manfred Ahlers ^(b), Sylvana Zöllner ^(a), Jens Hüttenrauch ^(a), Klaus Diesel ^(a)

^(a) DBI Gas- und Umwelttechnik GmbH; ^(b) EWE Netz GmbH

International Gas Union Research Conference 2014 – TW2-3 Copenhagen, 17th. September 2014

EWEN

- Motivation and technical approach
- Considered cases and aims
- Methodology
- Results
- Conclusion

Need for adaptions in order to accommodate green gases (g-gases)

- Increasing injection of g-gases (also taking over load from power grids)
- Smart solutions are needed (not only new grids)

Regulatory Challenges

- Need for reduction of costs and
- Increased infrastructure efficiency

Is dynamic pressure control (DPC) an effective smart solution?

DPC-approach

- Using the technical available pressure swing of gas grids as a buffer to
 - Increase the accommodation capacity for g-gases
 - Reduce the compression energy for redirecting gas to higher pressure tiers
 - Optimise the gas procurement

Case: "rural area" - aiming at:

- Improving g-gas accommodation capacity in a medium pressure grid
- Reduction of compression energy (necessary if gas is redirected to higher pressure tiers
- Considered operational situations (min., max. and medium gas consumption)

Case: "urban area" - aiming at:

- Smoothing the daily load curve by using the DPC as buffering option
- Reduction of costs for internal gas procurement by reduction of the peak load
- Considering the max. load situation is sufficient as this is relevant for the internal procurements

Methodology

- Simulation the flows in the selected gas grid with a pertinent Software (Stanet) for the selected operational modes (heavy, medium and weak load)
- Concluding the accommodation potential for g-gases as well as the share in comparison to conventional natural gas
- Determining the allowable pressure swing limits and verifying by modelling that all customer are provided with sufficient pressure
- Changing the injection activity of the pressure regulations stations in order to give priority for g-gas injection and using the grid as a buffer
- Determination of the g-gas share after applying the DPC
- Concluding the effect on saving compression energy and peak loads

RESULTS CASE: "RURAL AREA"

G-gas accommodation capacity Energy for recompression

Results – rural area effect on g-gas accommodation

11,0

5,2

dynamic pressure control

(reduced minmum

pressure)

biogas injection

natural gas

04. Juli 2014

Dynamische Druckfahrweise - Ergebnispräsentation

7

Results – rural area effect on g-gas accommodation

8

Results – rural area effect on g-gas accommodation

Increase of g-gas injection

- 100% accommodation in the medium pressure grid has been achieved
- In the weak load situation a gas redirection to an nearby industrial area is mandatory but recompression to about 3 instead of 40 bar.

Necessary action to achieve the results

- Seasonal adoption of gas pressure regulation injection pressures
- Reduction of minimum pressure to 0.3 bar

Results – rural area effect on compression energy

- Weak load situation (18,4°C): The needed compression energy can be reduced by about 90% due to the DPC and the redirection of excess gas into the industrial area
- In the heavy load situation (-3,5°C) the whole g-gas can be injected into the medium pressure grid if DPC is applied. The compression energy is therefore reduced by 100%

RESULTS CASE: "URBAN AREA"

Smoothing daily load curve/optimisation of gas purchase

Results – urban area optimisation of gas purchase

04. Juli 2014

Potential for optimisation of gas purchase

- Depends on the buffer opportunities of the gas grid (volume and pressure limits)
- In the considered case a peak load reduction of 5% have been achieved – the internal orders could be reduces in the same amount

Necessary action to achieve the results

- Daily adoption of gas pressure regulation injection pressures is needed
- Net pressure limits need adoption (Min.: 0.3 bar, max.: 1.8 bar)

CONCLUSION

Dynamic Pressure Control can contribute positively to the injection of G-Gases into the existing natural gas grid.

Main effects

- Significant increase oft the injection capacity in rural areas
- Reduction of compression costs (up to 90%)
- Optimisation of the gas purchase and internal orders by reduction of the peak load

Needed precondition/action

Seasonal adoption of the pressure limits of regulations stations in rural and daily adoption in urban areas Energie mit Zukunft. Umwelt und Verantwortung.

Thank you for your attention!

Ihre Ansprechpartner

Gert Müller-Syring

Head of Department Gas Grids

DBI Gas- und Umwelttechnik GmbH Karl-Heine-Straße 109/111 D-04229 Leipzig

Tel.: (+49) 341 24571-29 Fax: (+49) 341 24571-36

E-Mail: gert.mueller-syring@dbi-gut.de

Web: www.dbi-gut.de

