

Inorganic Membrane for Gas purification

Mr. Udo Lubenau

DBI Gas- und Umwelttechnik GmbH

IGRC - Workshop session TW 4

Kopenhagen; 18.09.2014

Comparison of organic and inorganic membranes

- advantages of polymeric membranes
- commercial successes/applications
- low cost membranes ease of manufacture
- membranes for H₂,CO₂ and O₂/N₂ separation are highly developed
- disadvantages of polymeric membranes
- membrane plasticization reduction of membrane performance
- competitive sorption (BTEX, CO₂)
- liquids/drops must be removed,
- Joule-Thompson-Effect hydrocarbon condensation membrane damage possible
 - clean feed is necessary

Disadvantages can be obviated with inorganic membranes.

Types of inorganic membranes

differences occur e.g. in structure, pore diameter and pore structur, hydroth. stability, hydrophilicity

Nanoporous Membrane

for test purposes the preparation take place inside of porous ceramic tubes between 250 mm and 1200 mm length

Preparation - Molecular sieving carbon membranes (MSCM)

- -Polyimide
- Polyfurfurylalkohol
- -Phenolharze
- Polysaccharide
- Polyester
- Cellulose

Characteristic - Molecular sieving carbon membranes (MSCM)

- gas permeation through the lattice plane distances of carbon
- very high ideal selectivity in H₂/C₃- and CO₂/CH₄-separation
- CO₂/CH₄ selectivity increases in mixed gas measurement
- adsorption selective separation behavior (ASCM) after thermal post treatment in oxygen due to the widening of lattice plane distances

Carbon membranes

- pore size and transport properties of carbon membranes can be tuned
 - interesting candidate for different industrial gas separation methods
- development of membranes for gas separation, selectivity based on adsorption and/or difference in size(mole sieving)
- The separation factor α in real natural gas (e.g. for CO_2/CH_4 or N_2/CH_4) are >> 10, in two component gas mixtures α > 100 is available
 - In some years N₂ and He separation are realistic
- H₂S-Concentration up to 200 mg/m³ is possible
- Working conditions
 - up to 100 bar
 - Flux increase, the selectivity decrease
 - temperature up to 100°C
 - Flux increase, selectivity increase
- high influence of module design

Hydrocarbon removal

- Comparison inorganic membrane polymeric membrane inorganic membrane
- very high selectivity for C₄/C₅ increase with C-number

polymeric membrane (like PDMS)

separation factor similar for all components

Hydrocarbon removal – conclusions and outlook

higher selectivity in combination with a stabile type of membrane is necessary

The interaction of the zeolite membrane with adsorbed molecules must

be understood

 The graph demonstrates the influence of permeate desorption on the

separation factor n-C4/C1

next step is to produce and test membrane-capillaries

Liquid handling in gas industry

- examples where the use of inorganic membrane for liquids is applied include
 - waste water cleaning, decolouring
 - retention of catalysts, separation of aromas
- Some technical liquids are used by the gas industry, partly those liquids can be regenerated/dried by membranes
- it is possible to dry glycols with a molsieve membrane
 - necessary to dry up to around 0,8 % water
 - very dirty liquid
- background:
 - lower temperature less energy consumption
 - less demand of TEG
 - higher flexibility

Membrane for Glycol Dehydration

Thank you for your attention!

For further information and questions please contact

Mr. Udo Lubenau

Head of Laboratory

DBI Gas- und Umwelttechnik GmbH Karl-Heine-Straße 109/111 D-04229 Leipzig

Tel.: (+49) 341 24571- ⁶⁰

Fax: (+49) 341 24571-36

F-Mail: Udo.Lubenau@dbi-gut.de

Web: www.dbi-gut.de

