

Practical Experience of Gas Heat Pump (GHP) Technology in both Domestic and Commercial Heating Sector

Dr. Stefan Bargel – E.ON Technologies GmbH

Dr. Matthias Brune – E.ON Technologies GmbH

Contents

- 1. Technology Drivers
 - 1. Political & Regulative Framework
 - 2. Market Situation
- 2. E.ON's Latest Activities
 - HEAT4U EU Project Development of a GHP for the Retrofit Single Familiy Home Market
 - 2. Demonstration Projects with 40 kW_{th} GHP product
- 3. Conclusions & Future Prospects

Political Framework as Market Driver

Nearly Zero Energy Buildings:

- By 2021 for all new buildings
- By 2019 for new public build.

Market situation: Existing Buildings

Residential buildings =

Largest portion of the overall European building stock (60%)

Residential buildings =

Largest specific consumption (kWh/m²/yr)

Residential buildings =

Low refurbishment rate (2% per yr)

Residential buildings =

Largest potential to drastically reduce energy use and CO₂ emissions

Further Driver for High Efficiency Technology

- Technical life expectancy of boilers: 15 – 18 yrs
- 60%-70% through all sizes are at least 15 yrs old!
- Current replacement rate is
 ≈ 3% per yr

Source: chimney sweeps' report 2012

A significant replacement market potential is available on mid-term.

Development of Gas Heat Pump (GHP) Technology

Initiative Gas Heat Pumps (2008 – 2012):

- Develop the Gas Heat Pump technology until readiness for marketing
- Result: GAHP products available on German market in 2013

Appliances at a glance

HEAT4U – EU Project: Development of a GHP for the Retrofit Single Family Home Market

Lab-tests at different laboratories with respect to different test standards

The main objectives of the field trial were to:

- demonstrate reliable, comfortable and efficient heating and DHW service in different countries and situations representative of the most typical installations for existing buildings,
- improve the installation guideline and have first feedback from installers,
- optimize the GAHP appliance control,
- optimize the GAHP system control,
- obtain measurements of primary energy efficiency under real conditions and energy savings compared to the previously installed systems.

HEAT4U – 5 Field Trials in 5 Countries (Heating Season 2013/2014)

 France - Existing individual house without buffer tank (Average Climate) - GDF SUEZ

- UK Existing individual house (limited space, small buffer) - BRITISH GAS
- Poland Low temperature demonstration testing (Cold climate) - FLOWAIR
- Germany High humidity demonstration testing (Average Climate) - E.ON
- Italy Demonstration testing (Warm Climate) - ENEA

German Field Test Location and Conditions

General description			
Title			
Country	GERMANY		
City	Bottrop	• • •	
		4 U	
Building type	One-family low insulated house		
	GAHP behind the garage in the garden		14
Number of inhabitants	3		RE
Year of construction	Ca. 1954	OFICIELE .	F
Heated building area [m2]	Ca. 140		
Specific heat load [W/m2]	-		
Design load for heating [kW]	15		酸
Design outdoor temperature of	-10		
location (°C)			1
Design supply temperature of heating system (°C)	60/45	THE THE	
Connection to the gas network	Existing		
Distribution system	High temperature radiators		
Operation mode	monovalent (with back up boiler)		
Output of peak load boiler (if	-		
bivalent operation) [kW]			
Alternative / complementary	Gas condensing boiler		
heating system			

Comparison Between Results of Lab Test and Field Trial

Achieving an efficiency of 130 % (NCV) compared with an efficiency of 100 % (NCV) for a condensing boiler (both measured at the same boundary conditions)

In comparison to the old heating system nearly 40 % energy savings could be realized

Field Trial in Bottrop Semi-detached house

Second GAHP Generation

Further improvements with respect to performance are expected in the next GAHP generations

Results from the Field Trial after the First Heating Period

- High efficiency of the gas absorption heat pump (efficiency ~ 130 % NCV) despite the following obstacles:
 - only radiator system → high temperature level
 - only an air/water heat pump
 - including DHW service
 - high part load conditions (warm winter)
- No comfort losses (end user wants to continue the field trial)
- Since completion of commissioning the GAHP system operated without failures → reliable operation
- Recommendation: some additional modifications are being carried out in the hydraulic and control system (e. g. different flow rates, algorithm of regulation, buffer tank concept)
- The experience from a field trial with real customers helps us to evaluate the possible integration of this technology

These results demonstrate that the adaptation of the GAHP technology to a retrofit residential house has been successfully achieved by providing a solution able to deliver substantial energy savings and to integrate a high share of renewable energy.

Demonstration Site: GHP in a public building

- Primary School
 - Approx. 200.000 kWh annual heating demand
 - Formerly gravity heating system, large old radiators
 - No domestic hot water demand
- Former heating device:
 - Gas low temperature boiler
- New System:
 - Peak load gas condensing boiler
 - Base load gas heat pump (40 kW_{th})
- Goal: end-energy reduction by 30% compared to old system

Thermal Performance of GHP

→ Approx. 40% reduction of CO₂ emissions and end-energy consumption with respect to former system!

Practical Challenges

Location of GHP:

- School's parking lot
 - → public accessibility
 - → safety issue for passersby and device
- Cage enclosure to prevent harm

Use of ammonia:

- Concern about health issue
 → small children are present
- Risk assesment by independent expert
 - → no problem due to volatility and shortening reaction

Noise Nuisance:

- Complaint was filed by nextdoor neighbour
- Found that neighbourhood is purely residential area
 → very strict limits, especially during night time
- Measurements by E.ON proved complaint valid
- Enhanced ventilation capable of modulation installed
- Time control to shut off GHP during night-time, if necessary

Condenser water drainage:

GHP

- No standard accessory available → custom-made
- Challenge to keep it clean (trees) → caretaker

Demonstration Site in a Multi-Family Home

- 7-flat multi-family-home
 - Existing building, equipped with radiators
 - Approx. 110.000 kWh annual heating demand
 - Approx. 20.000 kWh annual domestic hot water demand
- Former heating device:
 - Gas condensing boiler
- New System:
 - Peak load gas condensing boiler
 - Base load gas heat pump (40 kW_{th})
- Goals: optimisation of auxiliary power consumption and investigation of DHW influence

Optimisation of Auxiliary Power Consumption

→ Auxiliary power consumption could be reduced by approx. 60% from first to second monitoring season.

Example of Customer Behaviour Influence

→ Customer influence can severely harm performance of sophisticated high efficiency technology

Conclusion & Future Prospect

- In all field trials, after initial issues had been overcome, reliable operation could be achieved
- GHPs are able to achieve very satisfying efficiency values
- On-site optimisation with respect to specific conditions is mandatory
- Practical issues, especially when placing a GHP in a public building have to be addressed
 - → valuable experience was gained
- GHP bear a substantial potential to conquer their market share in both the residential existing buildings and the public buildings segment
- There is still a way to go to fully integrate GHP technology to all regulatory schemes, currently GHP is still a niche
- Today GHPs are capable to fulfill the German Energy Savings Ordinance for newly built houses (but are not accredited to date)
 - → with already anticipated tightening of requirements, additional measures like the introduction of biogas is needed
- GHPs have the potential to be part of the solution!

