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Green House Emission 

 139 billion m3 of gas is flared annually 
 
Major  green house  gases: 
 CO2 : 9–26% 
 CH4: 4–9% 
  Ozone, which contributes 3–7% 

 
Other source of pollutants : 
 particulate soot 
 oxides of nitrogen (NOx) 
 sulfur oxides (SOx) 
 volatile organic compounds (VOCs) 
 unburned fuel 
 undesirable by-products of combustion 
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Fig 1. The configuration of domestic gas processing plants. 
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Gas flaring in South Pars Gas Complex 
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Refinery 4 

4 



5 

SL 

SL 

SH 

SH 

air 

Acid gasses 

from 

Unit 101 

Train 2 

atm 

E103 

E102 

E104 

E101 

E108 E107 

E106 E105 

D103 

D101 

R101 
H102 

H101 

R102 R103 

200C 215C 235C 

307C 230 C 204 C 

181C 

173 C 

180C 

220C 

220C 

129 C 

H103 

SH 
D102 

145 C 

A101 

Fig 2. Schematic of SRU 



H2S + 3/2 O2  H2O + SO2   ( combustion of acid gas)  

2 H2S + SO2  ↔ 2 H2O + 3/2 S2   ( CLAUS reaction ) 
 

Claus Reactions 
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Flare gas composition 
 

Table 1. Composition of Flare Gas 

Component Mol Fraction 

Methane 
0.87264 

Ethane 
0.055636 

Propane 
0.020457 

N2 
0.036381 

CO2 
0.000498 

Butane 
0.009644 

Pentane 
0.003508 

H2S 
0.000000 

H2O 
0.001221 
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Flue gas composition 
 

Table 2. Flue Gas Composition 

Component Mol Fraction 

CO2 
0.256142 

SO2 
0.004456 

H2 
0.006695 

CO 
0.004115 

O2 
0.01 

N2 
0.476591 

H2O 
0.242 
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Gas to Liquid Technology 

 The world energy crisis 

  High oil prices 

 Environmental pollution  

 

Gas To Liquid (GTL) technology 

to 

Manufacture of transportation fuels 
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Process outline 

Reforming of Methane 

 Steam reforming 

 

 Partial oxidation reforming  

 

 CO2 reforming 

 

1

298224 206,3  kJmolHHCOOHCH K

1

298224 9.35,25.0  kJmolHHCOOCH K

TGkJmolHHCOCOCH KK 32.6761770,247,22 298

1

298224   
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Steam reforming 

 Steam reforming is the most widely used technology for methane-based syngas 
production.  

 Drawbacks: 

 

  High H2/CO ratio≈3 

 

 Excess steam to avoid carbon deposition on the catalyst. 

 higher operation cost 

 

 High temperature tubular heat exchanger reactor  

higher Capital cost 

 

 Production of CO2 with syngas 

The removal and disposal of CO2 is another major issue. 
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Partial oxidation reforming (POM) 

 Syngas with a H2/CO ratio of 2 

 Mildly exothermic process 

 

 Non-catalytic and catalytic process 

 

Non-catalytic  

Operated under the conditions of 30-100 atm and around 1573K.  

    High temperature  

 

Catalytic process 

 Lower temperature 

 Efficiency and Economics 

 Short duration time 
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CO2 reforming  

 Lower theoretical H2/CO ratio  

  Reuse of CO2 

Most difficult problem  

 Carbon deposition through methane decomposition  

 Boudouard reaction which rapidly deactivates the catalyst 

 

     

catalyst development major aspect of research in this area 

 

TGkJmolHCCOCO KK 87.439810,171,2 298

1

2982   
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Catalyst for CO2 reforming of Methane 

Metal + Support+Promoter 
 

 Role of Metal 
  CH4 adsorbed on the metal in a dissociated form to produce hydrogen and 

a hydrocarbon species CHx (x=0–4) 
 
Values of x dependent on: 
 Metal substrate 
 Reaction temperature 
   

 VIII (ruthenium) 
  IX (cobalt, rhodium, iridium) 
  X (nickel, palladium, platinum) 

 
 Ni-based catalysts: resistant to carbon deposition and high activity for reaction. 
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Catalyst for CO2 reforming of Methane 

Metal+Support+Promoter 

• Role of Support 
 distinct behavior in catalytic reactions  

 resistance to carbon deposition. 

 

 Acidic Support-------SiO2 

 Basic supports--------Al2O3 
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Metal+Support+Promoter 

 Role of Promoters 

 Improving the coke resistance 

 Enhance the activity of reactions 

 

 Textural 

 Chemical 

 Alkali----------------------------------K 

 Alkaline earth meal-----------------Ca 

 

 

 

Catalyst for CO2 reforming of Methane 
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Mechanism for the CO2 Reforming of Methane  
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Dry Reforming Process Technologies 

 Fluidized 

 Fixed bed reactors 

  Nonthermal plasma  

 Stability of Methane 

 High temperatures and pressures suffer to carbon deposit 

 

 Membrane Technology 

 Thermodynamic equilibrium 
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Fischer-Tropsch Synthesis 

 

Fischer-Tropsch synthesis  

 
in GTL process 
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Fischer Tropsch Reaction 

 Fischer-Tropsch  reaction 

 

  CO + 2H2 → -CH2- + H2O 

 

 Water Gas Shift Reaction 

 

CO + H2O  ↔  H2 + CO2 

25 



Fischer-Tropsch mechanism 
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Classification of FT processes 
 
 Low-Temperature Fischer-Tropsch:  

220°C to 250°C 

 multi-tubular packed bed 

 Iron-based, Co-based catalyst 
 long chain molecules 

High-Temperature Fischer-Tropsch 

Above 300°C 

 fixed fluidized bed reactors 

 Iron-based catalyst 

 lighter product slate 
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Products of Fischer-Tropsch Synthesis 

 HTFT product spectrum much lighter than that of the two LTFT 
processes 

 

 Iron-FT catalysts much more oxygenates than cobalt-FT catalysts 

 

 Iron-FT catalysts much more olefinic product spectrum than cobalt 
catalysts 

 Fe-HTFT synthesis: gasoline and light olefins 

 Two LTFT processes: middle distillates 
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Catalytic dehydrogenation  
 

 Low H2/CO ratios:0.7–1.1 in DRM  

 

 Water–gas shift (WGS) in FTS technology to raise the hydrogen content 
of the syngas to the required levels 

CO + H2O→H2 +CO2 

 one CO2 molecule for each H2 molecule in WGS reaction 

 

 Catalytic dehydrogenation (CDH) of the (C1–C4) products of the 
Fischer–Tropsch synthesis (FTS) 
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Catalytic Dehydrogenation  
 

 CDH reaction in a state of psuedo-equilibrium: 

 

 

 

At a given temperature as the bonds of the activated complex break to 
form: 

  H2  

 Solid carbon in the form of MWCNT (CM) 

 

  244 2HCCHCH M  
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Catalyst and production 
Nano-scale 

                    Fe–M (M = Pd, Mo or Ni) catalysts supported 

on Alumina  

 Decomposition of  lower alkanes to produce hydrogen 

 Carbon nanofibers or nanotubes 

 

 Above 600 °C, multi-walled nanotubes with parallel walls in the 
form of concentric graphene sheets. 

 

 At or below 500 °C, carbon nanofibers with capped 
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MWCNT @ 700 C 
(CDH of methae) 

SCNT @ 500 C 
(CDH of propane) 33 

Fig 5.  Typical CNT production in CDH 
process [Hofman 2011] 



CO2 emissions avoided, water saved and products 

 methane injected into the CDH reactor : ∆C1  

    gaseous products for a FTS-CDH-MI plant 

                      ∆C1 + (C1–C4) 

 Total reactants  yielding oil products  

                     C5+ = 100% - (∆C1 + (C1–C4)) 

 Hydrogen product 

 

 

 MNT product 

 

 

 Typical catalyst in FTS with =0.83  

 

 
 

 

     olCCxCCxCxwtH
par 423422112 %%%.%)( 

     
olparMNT CCxCCxCxwtC 42342211 )%100()%100()%100(.%)( 

     olCCCCCwtH
par 424212 %29.14%82.20%25.%)( 

     
olparMNT CCCCCwtC 42421 %71.85%18.79%75.%)( 

34 



 The weight of Water saved  

 

              18/2 × the weight of H2 produced by CDH 

 

 CO2 emissions avoided  

 

               44/2 × the weight of H2 produced 
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Product and environmental saving 

Typical products and environmental savings for a 50,000 barrel/day FTS-CDH-MI plant with a typical 

catalyst α= 83 * 

Products Weight (tons/day) 

50,000 barrel of oil 7229 

H2 1000 

Total CNT 2930 

Environmental saving 

CO2 avoided 22007 

H2O saved 9002 

* according to Gerald P. Huffman research 
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conclusion 

 DRM-FTS-CDH/MI to avoid CO2 emission and flare gas recovery 

 The mitigation and utilization of greenhouse gases, such as carbon dioxide and 
methane 

 High quality oil (C5+) production  

 Reduction of steam and fuel gas consumption 

 Specific values of the H2/CO ratio for specific products 

 Hydrogen in the product could be applied as a fuel in fuel cells 

 The water saved by avoiding the water-gas shift reaction 

 Production of Multi-walled carbon nanotubes (MWCNT) 
 Removal of toxic metals from water 

 Ultra-strong MWCNT fibers and ropes for use in transmission lines and cables 

 Replacement of carbon black in tires by MWCNT to improve the durability of tires 

 Composites for use as structural materials in automobiles and trucks, airplanes, body and vehicle armor, and sports 
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