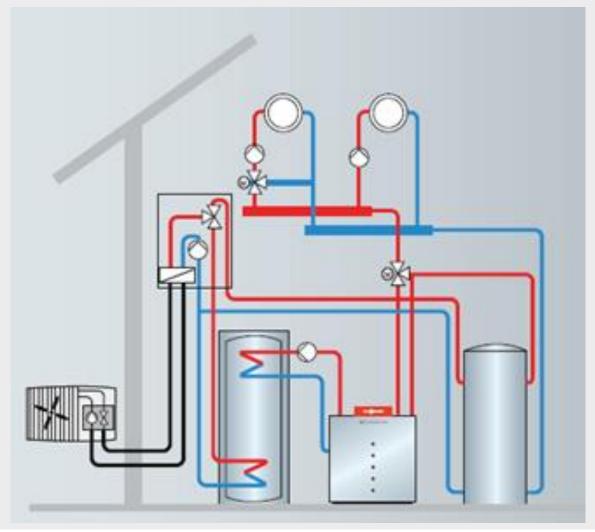
SUSTAINABLE GAS TECHNOLOGY

Domestic gas hybrid technologies and their interaction with the Danish energy system


Danish Technological Institute (TI) and Danish Gas Technology Centre (DGC) DENMARK

> Frederiksen, Karsten (DGC) Schweitzer, Jean (DGC) Vinter, Svend (TI) Jacobsen, Emil (TI)

> > September, 17, 2014

IGRC 2014 Paper Code: WO5-2, Abstract ID: 667

Hybrid with gas boiler and heat pump

Partners

- TI is a consulting and development organisation within energy and environment focusing on energy.
- TI works with all energy technologies: e.g. heat pumps, combinations of oil, gas and renewable energy.
- DGC is a consulting and development organisation within energy and environment focusing on energy gases.
- DGC works with all energy gasses: natural gas, town gas, LPG, biogas and hydrogen, and also with combinations of gas and renewable energy.
- DGC was established in 1988 by the Danish gas companies.

Danish Energy Policy

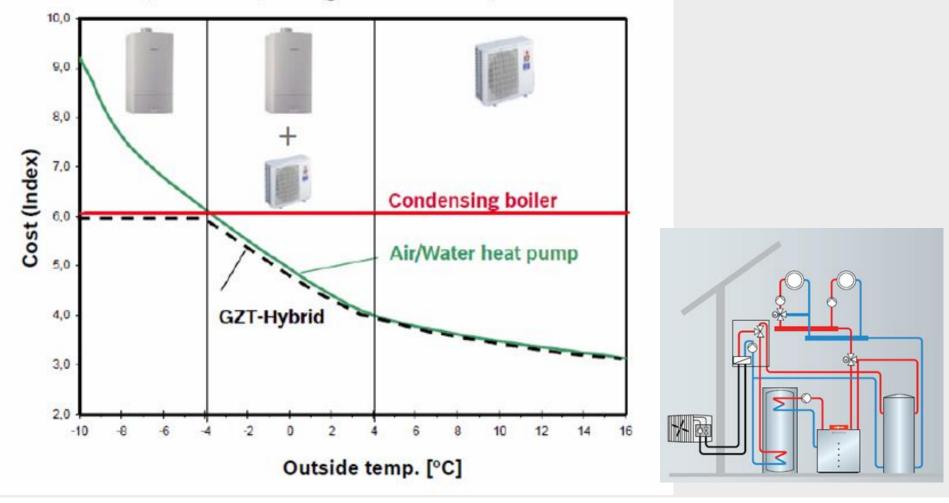
- Electricity, wind, biomass and energy savings
- No fossil oil and gas in new private homes from 2013
- Shift from fossil oil and gas to renewables
- Analyses of the future use of the gas infrastructure

Gas is renewables' best friend ...

- The gas infrastructure has a very large energy storage capacity that can balance the energy system with more wind power and solar
- A gas boiler is flexible and may easily be combined with renewable energy technologies (hybrid systems)

... and Gas is also renewable ...

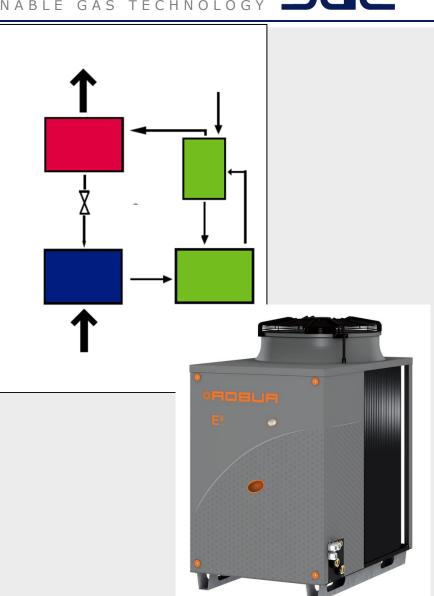
- Gas can be made greener by mixing with renewable gasses (e.g. biogas)
- Gas can be more energy-efficient (e.g. Gas heat Pumps)


Hybrid the bridge to the future – English analysis ...

Today		<i>Objective 2050</i> No CO2 for space hea	nting
District heating		District heating	
Gas boilers	Gas heat pumps Hybrid technologies mCHP	Electrical heat pumps	
Electrical heat pumps			

SUSTAINABLE GAS TECHNOLOGY

Hybrid (add-on/new)


Operation depending on outside temperature

IGRC 2014 Paper Code: WO5-2, Abstract ID: 667

Danish Gas Technology Centre

Danish gas hybrid activities

- Gas companies' strategy process (bridging the gap since 2009), RE demo projects together with the boiler industry
- SmartGrid network in DK (2013-)
- EUDP, FlexGas (2014-2016)
- Danish Energy Agency, national demonstration projects (TI/DGC 2013-2015)

Roadmap of the DK national demonstration project

	2013	201	L4	20	15
Task 1 - Description of gas hybrid systems and their implementation potential	OK!				
Task 2 - Investigation of perspectives of hybrid solutions in connection with Smart Grid	OK!				
Task 3 - Support of the phasing out of fossil fuels	OK!				
Task 4 - Experience from abroad	OK!				
Task 5 - Finding suitable hosts for field tests		(OK!)			
Task 6 - Planning of measurements		OK!			
Task 7 - Installation of hybrid units					
Task 8 - Installation of measurement equipment					
Task 9 - Identification of practical problems during installation					
Task 10 - Measurements					
Task 11 - Identification of operating economy					
Task 12 - Reporting					

Results: Why Gas hybrid?

The best of two worlds

Gas boiler

Advantages: Low cost of installation. Constant output and efficiency at low outdoor temperatures. Can be installed in old, uninsulated houses. **Disadvantages:** 100 % fossil today.

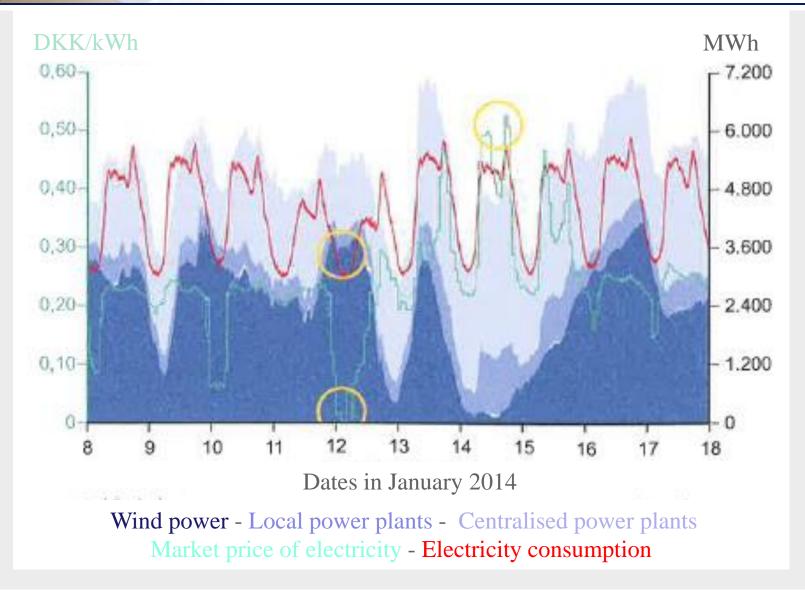
Heat pump

Advantages: High efficiency at moderate outdoor temperatures. High share of Renewables.

Disadvantages: High cost of installation, Lower output and efficiency at lower outdoor temperatures and high flow temperature.

Gas hybrid heat pump

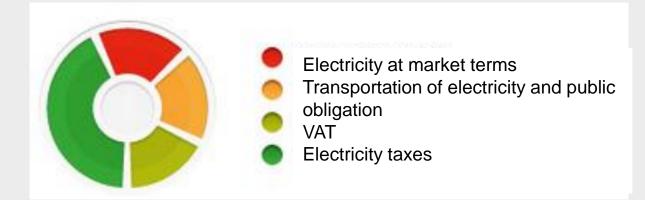
Advantages: Low cost of installation. Constant output and efficiency at low outdoor temperatures. Can be installed in old, uninsulated houses. High efficiency at low and moderate outdoor temperatures. High share of Renewables.



SUSTAINABLE GAS TECHNOLOGY DGC

Peak shaping and Smart Grid aspect

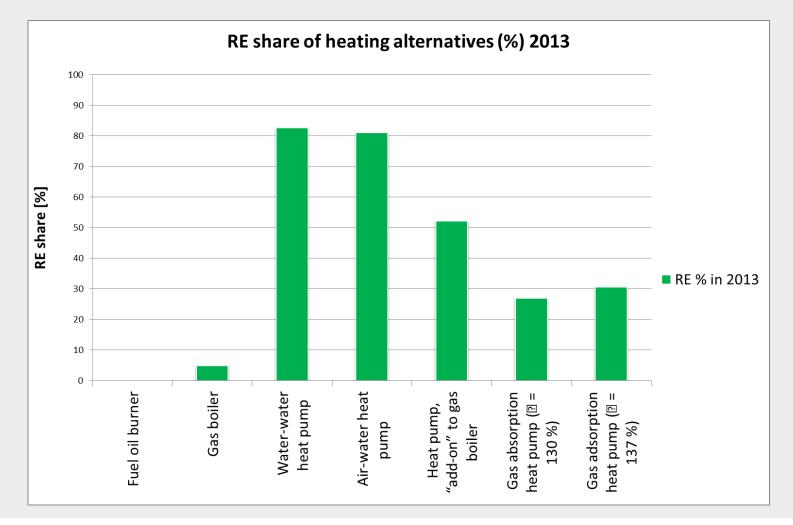
- Hybrid help solving "peak wind" electricity production preventing overload of electricity grid
- Use of the gasboiler, at very low outdoor temperature when the electricity production cannot cover all demand
- The result is no need to oversize the electricity production capacity and residential heat supply is not affected.
- SmartGrid will help in controling the hybrid appliances according the electricity production (e.g. with tarif control).



IGRC 2014 Paper Code: WO5-2, Abstract ID: 667

Results: The effect of "Peak shaping"

- Danish electricity capacity and consumption in 2012 was 14,166 MW and 112,119 PJ
- To connect/disconnect 400000 heat pumps in DK will average give approx. 3.11 %, or at peak load 6.59 %, of the total capacity during the heating season.
- Based on the actual average consumption in 2012 the gas-hybrid heat pumps would add an average flexibility of 12.38 %, or at peak load 26.25 %, during the heating season.
- The electricity price accounts for a relatively small share of the total expenses/costs including distribution costs, electricity taxes etc.

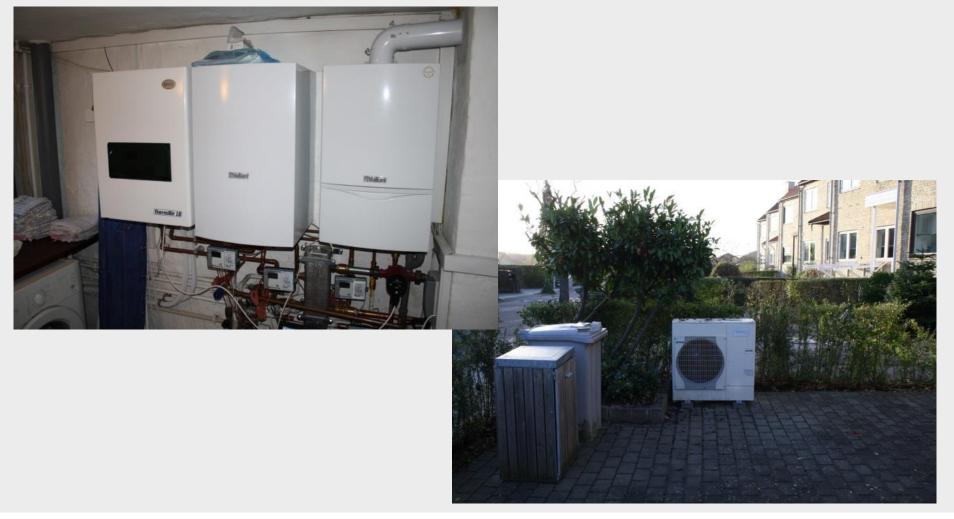


SUSTAINABLE GAS TECHNOLOGY

Results: Economy (heat demand 16.800 kWh/year)

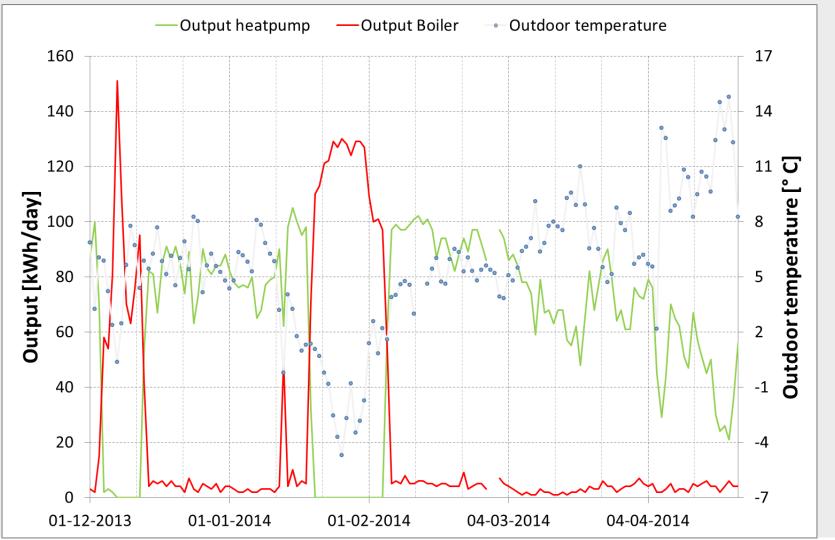
Parameter	Alt. 1	Alternative 2	Alt. 3	Alternative 4	Alternative 5
Heating system	Gas	Water-water	Air-water	Gas hybrid heat pump	Heat pump as "add on"
	boiler	heat pump	heat pump	(new installation)	to existing gas boiler
Energy input	Natural	Electricity	Electricity	Gas (40 %) Electricity	Gas (40 %) Electricity
	gas			(60 %)	(60 %)
Total installation costs [DKK]	30.300	118.200	95.200	69.900	35.700
Expected lifetime [Year]	22	20	20	20	20
Plant efficiency [%]	102	330	300	102/350	102/350
Service & maintenance	2.200	1.900	1.400	2.200	2.200
[DKK/year]					
Total annual costs	17.328	18.150	16.973	16.813	14.636
[DKK/year]					
Index [-]	1,00	1,05	0,98	0,97	0,84

Results: The gap from fossil fuels to renewables



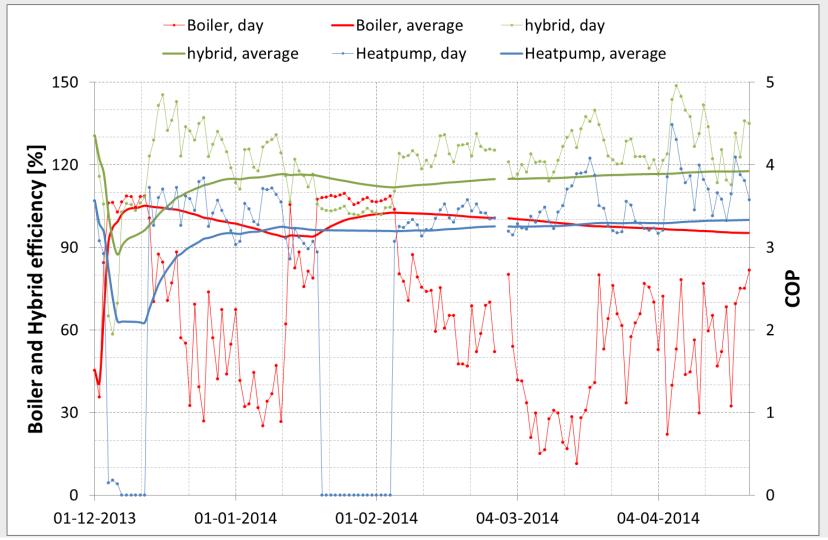
Status: DK marked and Field test

- Number sold in Denmark (interview dec. 2013): 86 units
- •1-2 "add-on" solutions (part of DGC measurement program)
- 15 "add-ons" (part of a Insero project)
- 3 gas absorption heat pumps
- 1-2 gas adsorption heat pumps



First ad-on field test installation (MHG-unit)

SUSTAINABLE GAS TECHNOLOGY


Results: Output vs Outdoor temperature

IGRC 2014 Paper Code: WO5-2, Abstract ID: 667

SUSTAINABLE GAS TECHNOLOGY DGC

Results: Boiler efficiency vs Heat pump COP

IGRC 2014 Paper Code: WO5-2, Abstract ID: 667

Hybrid with a new electric element

- Preliminary testing with good results!
- New national demonstration project with good collaborators (2014-2016)

Conclusion

- Gashybrid can make efficiency optimization (End User economy, CO₂).
- Gashybrid is a realistic way of bridging the gap to more RE in existing residences.
- Gashybrid can make comfort and safety in new business concept (leasing).
- Green wind and solar power consumption in Danish residential Gas Hybrid installations is possible in periods with high power production but...

Next steps

- Focus on weak points and recommendations to the industry. E.g. installer education.
- Development is needed It would be reasonable to consider regulation of taxes according to the electricity production.
- Test facilities / Standardisation / ECO design

hank you for you attention!

IGRC 2014 Paper Code: WO5-2, Abstract ID: 667