

Threat detection to pipelines using an automated aerial surveillance system

G. Pognonec¹, M. Lecchi¹, <u>J.A. Lana</u>², B. Raguin³, M. Sohlbach⁴, A. Scholtz⁵,

¹GDF SUEZ – CRIGEN (F)

²Enagás (E)

³GRTgaz (F)

⁴Trimble (D)

⁵Technische Universität Braunschweig (D)

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- 6. Experimental Flights
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Background

Natural gas transport by pipeline is one of the safest transportation methods of dangerous goods.

- Gas leakage statistics shown a continuous improve (less leakages) with years:
 - Better surveillance modes.
 - Better construction techniques.
 - Better maintenance procedures.
 - **–** ...
- Anyway, accidents happens:
 - About 50 % of unintentional gas leakages are caused by third parties.

Western European statistics

Improvement year by year.

Source: 8th EGIG report

Pipeline safety management

enagas

Surveillance is a preventive barrier.

- Pipeline operators are continually looking for new system to improve surveillance:
 - Techniques based on fibre optic cable.
 - Techniques based on sound detection.
 - **–** ...
- Automated Aerial Surveillance System:
 - Innovative safety barrier.
 - Aim to reduce cost and environmental footprint.
 - Develop in the framework of iNTeg-Risk project.

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

R&D Project funded by European Commission:

7th R&D Framework Programme.

 Global objective was developed a methodology to detect emerging risk.

Organization:

- 5 Subprojects.
- 88 partners.
- Budget: ≈ 19 M Euros.
- Duration: 54 months: 1/12/2008 31/05/2013.

Our participation:

 To study emerging risk of threat detection by an automated aerial surveillance system of industrial infrastructures using an UAS.

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Automated Aerial Surveillance System

Required the utilization of an UAS, but ...

What is a UAS?

- Unmanned Aerial System:
 - Unmanned Aerial Vehicle, UAV.
 - Remote Piloted Aerial System, RPAS.
 - Drone.
 - And more.
- In the context of industrial infrastructure surveillance, like gas pipelines, would be a small aircraft, similar to an air model or slightly bigger:
 - With an automatic navigation system: inertial and GPS.
 - Carrying photo and/or video cameras.
 - Able to take off/landing in reduce space.

UAS CAROLO P200

Payload: 1.5 kg.

Maximum: 4 cameras:

2 digital photo camera.

2 real time video camera.

Autonomy: 90 min.

Speed: 75 km/h.

Very stable flight, gives high quality images.

UAS DT18

Weight: 2 kg.

Payload: 0.25 kg.

2 camera, one real time video.

Autonomy: 100 km.

Speed: 50 km/h.

UAS ELIMCO E-300

Weight: 15 kg.Payload: 4 kg.

 2 or 3 camera, including real time HD video.

Autonomy: 180 min.

Speed: 60 – 110 km/h.

UAS CatUAV Atmos 5

Weight: 2 kg.

Payload: 0.5 kg.

2 camera, one real time HD video.

Autonomy: 180 min.

Speed: 40 - 75 km/h

BY PEOPLE FOR PEOPLE

Other UAS

enagas

⊗Trimble

These are not UAS in the context of the project:

MQ-9 Reaper

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

UAS Regulations

enagas

- UAS is a new technology:
 - From 2008 new regulation has entried into force.

 At the beginning of project, 2008, no regulation in participating countries.

- Existing regulation in 2014:
 - General supporting document to RPAS from EC.
 - France & Spain: very restrictive regulation.
 - Germany: no regulation, special permission needed.
- Current general limitations:
 - 2 kg weight.
 - Flight altitude below 150 m.
 - This limits the fit for purpose.

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Steps in authomatic aerial surveillance enage

Step 1: Image acquisition.

Step 2: Image processing.

- Step 3: Threat detection:
 - Utilisation of a software for detecting differences between images taken at different times.
- All the steps are highly automated to minimise human intervention.

Step 1: Image acquisition

- Elements needed: UAS
 - Unmanned aircraft.
 - Autopilot.
 - Global Navigation Satellite System GNSS.
 - Inertial Measurement Unit (IMU):
 - UAS's position and attitude (roll, pitch, yaw).
 - Camera system.

Step 2: Rectification and mosaicking

 Automatic detection of tie points in aligned images.

GOF SUCZ

 Automatic generation of height model.

 Automatic orthorectification and mosaicking.

Step 3: Analysis and threat detection

- Automatic object-based detection of potential threats.
- Comparison of images taken at different times.
- Comparison and weighting of three criteria:
 - Color layers: red, green & blue.
 - Contrast.
 - Shape.
- Automatic threat detection.
- Manual validation of threats.

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Experimental flights

- eriagas
- GDF SVCZ
- **҈**Trimble
- Technische Universität Breunschweig

- 5 flight campaigns:
 - Spain, June 2009.
 - France, October 2009.
 - Germany, July September 2012.
 - France, October 2012.
 - Spain, April 2013.
- Two UASs tested:
 - Carolo P200, develop by TUB for the project.
 - DT18, French provider fulfilling French regulations.
- The campaigns allowed:
 - To develop the software:
 - Image processing and mosaicking.
 - Threat detection.
 - To highlight the importance of camera/UAV integration.
 - To demonstrate the suitability of the UAS to take images, useful for the purpose, from a pipeline corridor.
 - To check the efficiency of the whole system: UAS + software.
 - To gain experience in UAS operation for this type of work.

Images above ROW (Spain 2009)

Suitability of images (Spain 2009)

Importance of UAS/camera integration (France 2012)

Rolling shutter effect

Problems to produce mosaic and performing threat detection.

Unstable flight: rotating ground object

Final prototype system (Spain 2013)

GRTgaz

Result get with the right camera and UAV integration:

 Detection of soil changes, not only machinery.

Time 1, Threat 5

Time 2, Threat 5

Time 1, Threat 6

Time 1, Threat 2

Time 2, Threat 6

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- 6. Experimental Flights
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Efficiency

- enagas
- The efficiency of the automatic aerial threat detection system should still improve:
- GDF SVEZ
- Importance of manual validation to reduce POFA.

	Flight Campaign	UAS	Threat Detection	Automatic		Verification		
				POD [%]	POFA [%]	POD [%]	POFA [%]	Comments
	France 2009	Carolo P200	iNTeg-Risk Version 1	94	93	89	6	Test of first threat detection system including visual search for omitted threats
	Germany 2012	Carolo P200	iNTeg-Risk Version 2	100	35	100	0	Data acquisition for further development of threat detection system
	France 2012	DT-18	Third party	50	98	97	0	Verification of automatically detected changes and visual search for omitted threats.
	Spain 2013	Carolo P200	iNTeg-Risk Version 2	76	91	76	0	Final test of threat detection system with real world data; no visual search for omitted threats.

POD: Probability Of Detection – POFA: Probability Of False Alarm

Risk to third parties of UAS

- No reliable statistics today:
 - Civil application too recent.
 - UASs are mainly used in military environment.
 - No civil incident reporting system still implemented.
- iNTeg-Risk project:
 - 1 accident in 99 flights (66 hours).
- Kinetic energy in case of accident is smaller that with helicopter/plane.
- Risk should not be higher than current aerial surveillance system.

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Future developments

- GRTgaz is studying how to use UASs taking into account:
 - Current performance of technology.
 - Limitations imposed by Regulation.
- Main option: short sections of pipelines where plane/helicopter cannot operate.
 - Test campaign foreseen in 2014.
- GDF SUEZ is looking for new application of UASs in energy sector, not only for gas pipelines.

- 1. Background
- 2. iNTeg-Risk project
- 3. What a UAS is
- 4. Regulation for using UAS
- 5. Automatic surveillance with UAS
- **6. Experimental Flights**
- 7. Efficiency and risk
- 8. Future development
- 9. Conclusion

Conclusions

- The work done at iNTeg-Risk project has allowed to develop and to test a new innovative automatic aerial surveillance system.
- The works performed highlighted the importance of:
 - Integration UAV/camera.
 - Regulations.
- With some additional development, the automatic aerial surveillance system will be ready for being deploy as a new surveillance procedure.

Thank for your attention Any question?