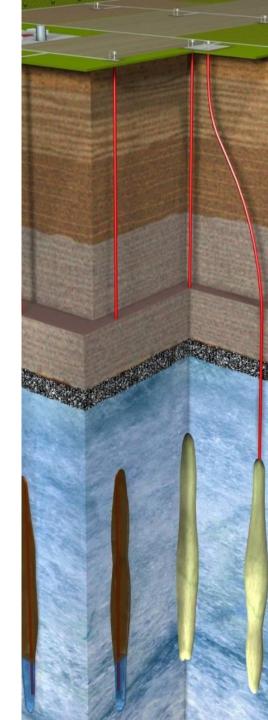
International Gas Union Research Conference, Copenhagen, September 17-19, 2014

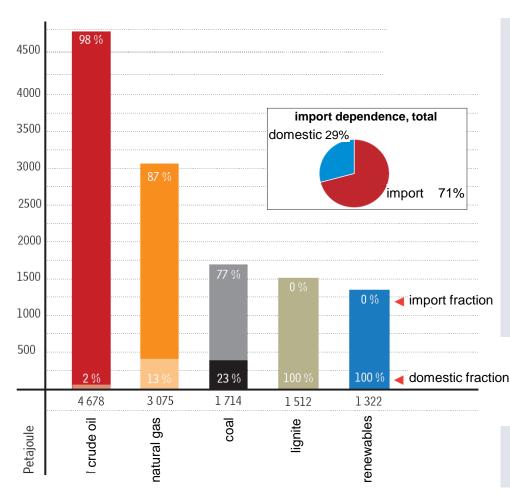

THE FUNCTION OF SALT CAVERN STORAGES

IN THE FRAMEWORK OF NATIONAL AND EUROPEAN ENERGY SUPPLY

– BY EXAMPLE OF THE ETZEL CAVERN STORAGE

Hans Joachim Schweinsberg IVG Caverns GmbH Friedeburg, Germany

Outline



The Function of Salt Cavern Storages in the Framework of National and European Energy Supply

- 1 Introduction Primary Energy Supply of Germany
- 2 Development of Underground Storages and Cavern Business
- 3 Function of Cavern Storages
- 4 Etzel Cavern Storage Yesterday and Today
- 5 Development of Storage Capacities in Germany
- The Function of Caverns with Regard to Renewable Energy Production
- 7 Conclusions

Primary Energy Supply of Germany

Self-Supply and Import (2010)

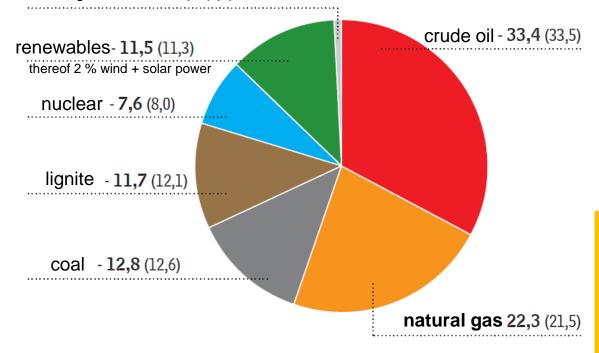
strong dependence on import of energy resources

crude oil 98 % natural gas 87 % coal 77 %

- high energy demand of **German industry and economy**
- high standard of living
- climate conditions

→ economic need to stockpile energy raw materials

Energy Mix


2013

Natural gas and renewables increase their share

Structure of primary energy consumption in Germany

ratio in [%] (previous year in brackets) total 13,908 PJ or 474.5 m t CE

other incl. el. power exchange balance 0,6 (1,0)

main gas suppliers:

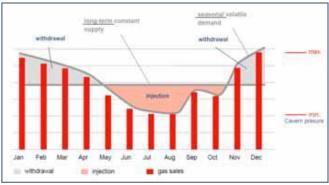
• Russia	34 %
 Norway 	31 %
 The Netherlands 	19 %

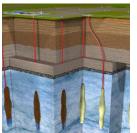
domestic production 12 %

Source: Arbeitsgemeinschaft Energiebilanzen (AGEB) AGE

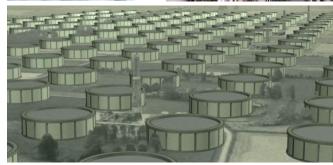
Motivation for Underground Storage

Stockpiling of Energy Resources security of supply in case of

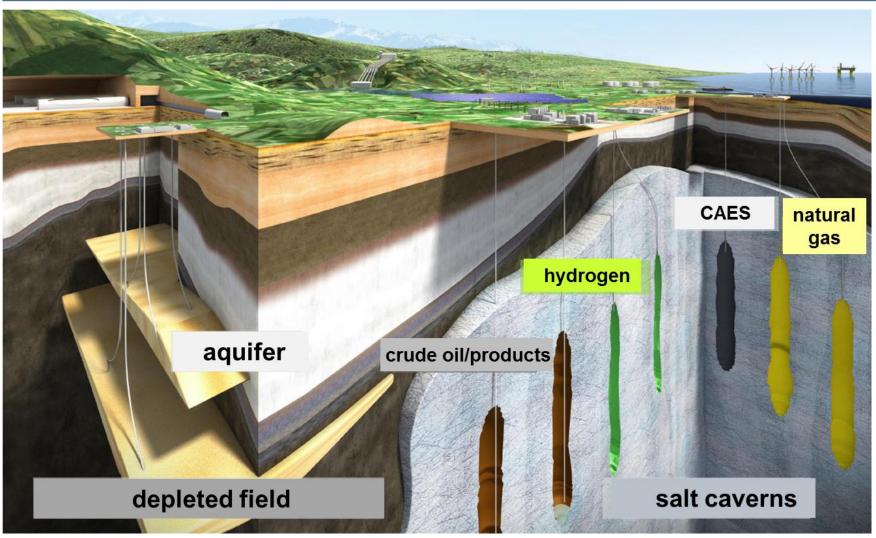

- fluctuating consumption (seasonal swing)
- technical disturbances in supply


Safety: protection against

- war damage
- sabotage
- disaster (weather, accident)


Environmental Protection

- transport in a confined system
- little surface area



VG Passion for Real Assets

Types of Underground Storages

Caverns for energy long-term storage

Source: KBB

Stockpiling for Crisis

- national petroleum reserve (crude, products) in case of supply interruptions
- regulated on statutory basis
- organized by stockpiling agency (public corporation)

Short-term Storage / Arbitrage

- subordinate importance
- only under specific economic conditions
- on initiative of oil trading companies
- risky (in respect to success)

Function and Development of Gas Cavern Storages

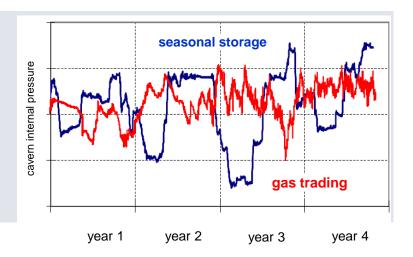

in the past

Phase 1: Safeguarding of Supply Contracts

- establishment of buffer storages
- to care for uncertainty of production or transport

Phase 2: Seasonal Storage

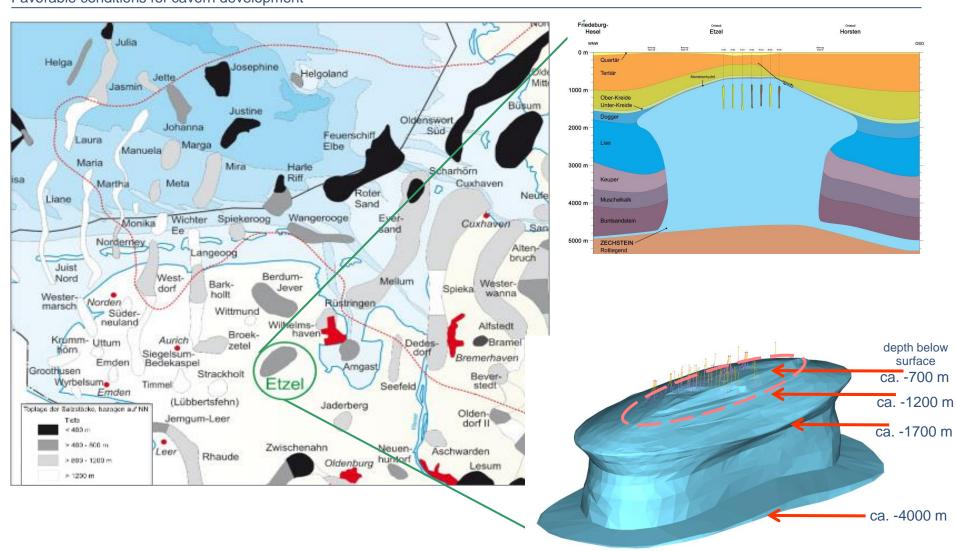
- to balance seasonal consumption
- to cover peak demand


Function and Development of Gas Cavern Storages

today & tomorrow

Phase 3: Increase of Gas Trading

- resulting from liberalization of the European gas market
- diversification of supply
- enhancement of gas infrastructure
- installation of "hubs"


Phase 4: Entry to Storage of Renewable Energies

- transformation of electricity into mechanical energy (CAES)
- transformation of electricity into chemical energy carriers (PtG: H₂ or SNG)
- re-conversation to electrical power to support grid stability and balance peak demand
- storage of heat energy

Etzel Cavern Storage – Geographical & Geological Situation

Favorable conditions for cavern development

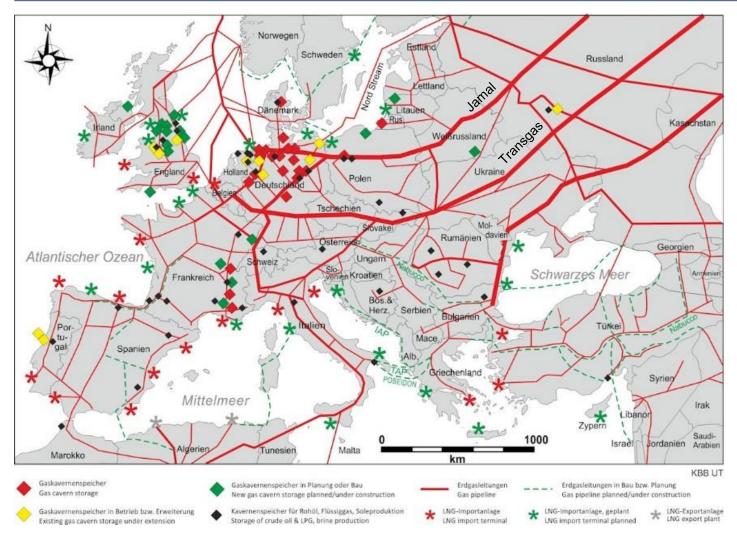
Favorable Conditions for the Etzel Site

Sea water withdrawal, brine disposal & crude oil infrastructure

sea water withdrawal

NWO crude oil jetty and tank farm

brine disposal


Connection to Supply Systems for Crude Oil and Natural Gas

Etzel Cavern Storage - Pipeline-Connections **EUROPIPE I & I NORPIPE** Spiekeroog Langeoog Baltrum Norderney Wangerooge Juist Dornumersiel Norden Borkum water, brine, oil NETRA ÖI Hamburg Aurich Wilhelmshaven **Emden-Etzel-PL** gas terminal Kavernenanlage Etzel Emden pipeline connection Bunde / Oldenburg to gas-hub since 2011 Oude Gas Wardenburg Ruhr-Region Werne Berlin Werne

VG

Supply Systems for Natural Gas

Gas on the way to central Europe

Source: KBB-UT

IVG Cavern Business – at a Glance

Facts

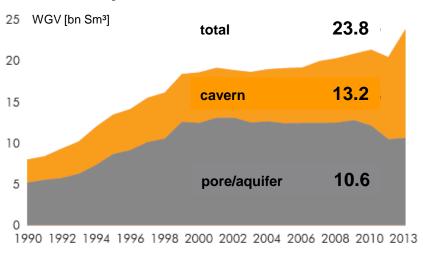
- IVG has been operating the cavern business since 1971: > 40 years **experience** with construction, operation and lease of caverns
- Storage of a major part of the strategic petroleum reserve for Germany and other European countries
- Interim storage of import gas volumes
 - for seasonal balancing of consumption
 - coverage of peak demand
- Cavern lease by long-term contracts to customers from the energy branch
- Today, the cavern site comprises 73 caverns
 - crude oil (24 caverns) ~ 10 m m³
 - natural gas (49 caverns) ~ 4.2 bn Sm³ WGV
- Additional caverns are under construction
- If required, the storage is ready for further expansion

1.100 m 1.200 m

VG

Etzel Cavern Storage

Above ground facilities, cavern sites and tenants



IVG

Development of Storage Capacity in Germany

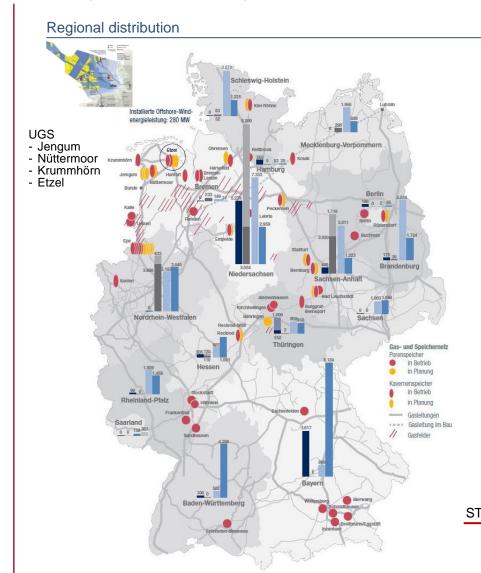
in comparison to storage capacity of other European countries (2013)

Development of Storage Capacity in **Germany**

of the German natural gas consumption can be covered by underground storages

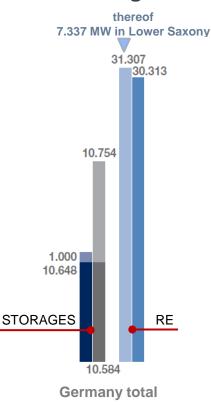
Underground Storage Capacity in the EU

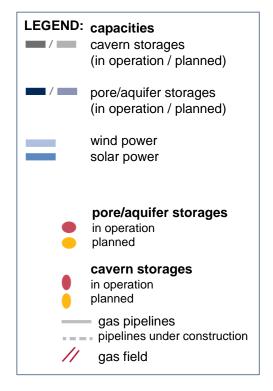
Working Gas Volume [bn Sm³]


EU total	:	99,9
Germany		23.8
Germany		20,0

- Germany is comparatively well secured by existing transport systems and underground storages
- ➡ Establishment of a Strategic Gas Reserve in political discussion
- Potential for European gas balancing system

Source: WEG, IGU



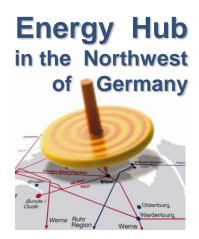

Underground Storages vs. Wind & Solar Power Generation in Germany

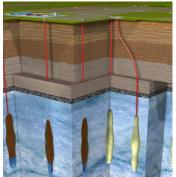
Lower Saxony is in front in regard to

- gas production
- wind power generation (on-/off-shore)
- underground storage

Capacity of German states (2012) Source: IVG Research acc. to data from BMU / LBEG, KBB

Salt Caverns – Energy Storage Today and Tomorrow



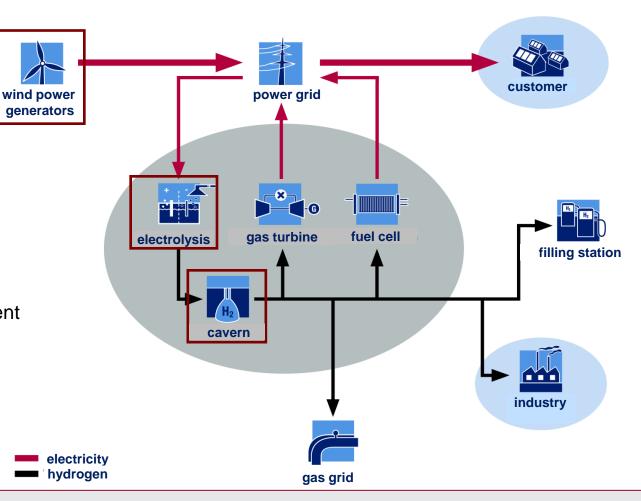

Bulk storages also for renewable energies

- Cavern storages are of strategic importance for security of supply in Germany
- ➤ The Northwest of Germany is becoming an important energy region due to the further development of wind parks and the existence of underground storages
- Caverns can play a key role in future energy supply because they are suited to store excess electrical power in form of compressed air (CAES), hydrogen (H₂) or synthetic natural gas (SNG)

Challenges

- research & development (system efficiency, facilities at industrial scale)
- public acceptance
- competitive ability on the energy market

Pilot Plant "Wind Hydrogen Storage" at Etzel



Long term storage of renewable energies (wind, solar)

connection to WPG / windparks

hydrogen generation by electrolysis

 caverns, energy storage and supply chain management

▶ Pilot plants are essential to demonstrate the feasibility of new technologies and to promote the development of new systems towards industrial level and economic use.

Conclusions

Function of underground storages

Security of Supply for crude oil and natural gas

- strategic reserve against crisis
- safeguarding of short term supply disruptions
- balance for seasonal fluctuations of consumption
- coverage for peak demand

requirements: - safe & reliable

- environmental friendly
- flexible, available at call
- economic and affordable
- Challenge due to energy turnaround:
 Storage of renewable energies
- hydrogen storage (system "Power-to-Gas") → long term storage
- compressed air energy storage (CAES) → peak demand
- · heat energy storage

Challenge for the Energy and Gas Industry

Technical and economic tasks

- safety and environmental protection with production and transport
- enhancement of network
- utilization of versatile supply
- structuring of energy sector to manage the complexity of the system
- research & development
- storage tailored to the market need
- cost control for energy supply

Communication and public relations

- consideration of the social environment
- cooperation with politics, federations and authorities in order to establish planning reliability
- generation of social confidence and acceptance by objective information and transparency

Thank you for your attention!

Hans Joachim Schweinsberg IVG Caverns GmbH D-26446 Friedeburg, Germany +49 4465 809-0

www.kavernen-informationszentrum-etzel.de www.ivg.de

