

Energie mit Zukunft. Umwelt und Verantwortung.

HIPS NET "Establishing a European understanding of admissible hydrogen concentration in the gas grid"

Main author: Gert Müller-Syring (a)

Co-authors: Stefan Schütz^(a), Dave Pinchbeck^(b), Prof.-Dr. Hartmut Krause^(a)

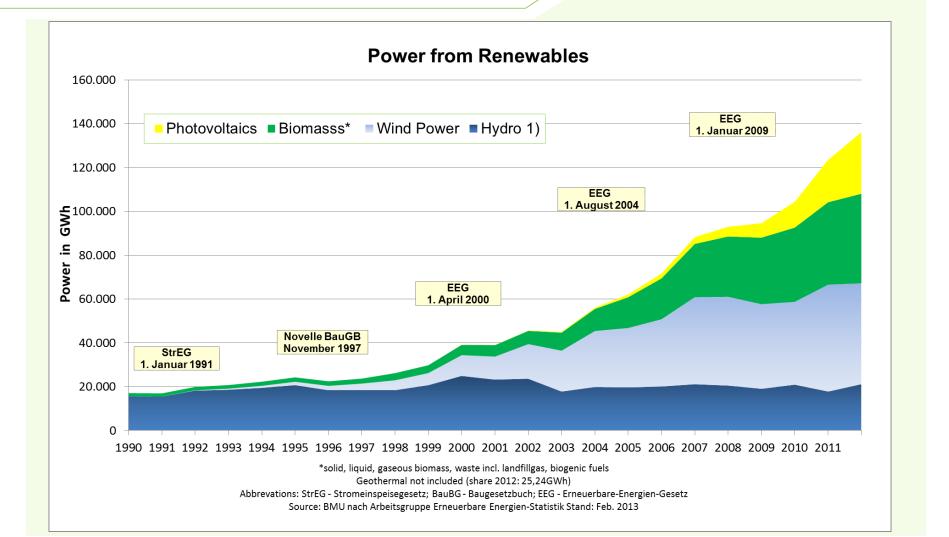
^(a) DBI Gas- und Umwelttechnik GmbH; ^(b) D Pinchbeck Consultancy Limited, Leicestershire, UK

International Gas Union Research Conference 2014 17th-19th September 2014 in Copenhagen, Denmark

Agenda

Motivation

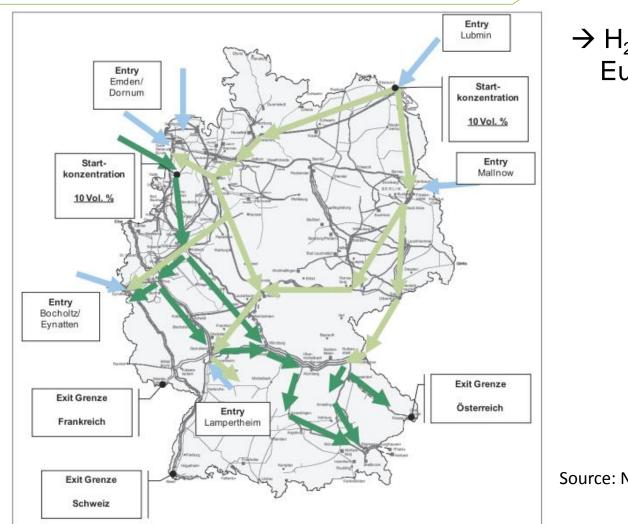
- H₂-tolerance of the gas grid current state of knowledge
- Projects recently launched/underway
- What HIPS NET contributes to the topic
- Conclusion



Motivation H₂ injection/use is connected to sustainability/energy storage

17th-19th September 2014

IGRC 2014 in Copenhagen, Denmark


1

- Long term storage (seasonal) of REN is feasible in the gas grid only (accounts for Germany but different e.g. for Austria and Switzerland).
- GHGE reduction goals in the transport sector needs solutions and Power to gas can reduce the load in the power grids
- **Z** Two energy carriers with strengths and weaknesses (H_2 and CH_4).
- In order to decide in which ratio the two should be implemented into the energy system an economic investigation is mandatory.
- Preconditions for such an analysis are:
 - Knowledge on H₂-tolerance of the gas grid
 - Knowing the cost for adoptions of infrastructure
 - Knowing the cost for the e-gases (CH_4/H_2)

Motivation Hydrogen distribution when injected in Baltic/North Sea entries

\rightarrow H₂ injection is an European issue

Source: NEP 2012

H₂-TOLERANCE OF THE GAS GRID CURRENT STATE OF KNOWLEDGE

Selection of studies/projects reflecting the basis for current knowledge on H₂-tolerance

- "Naturalhy", 2004-2009 (focus on pipelines, end use and safety)
- "Ameland", 2007-2011(demonstration/ end use)
- "DVGW energy storage concepts", 2010-2012 (state of the art analysis/ development and assessment of technical concepts – Germany)
- "HIPS", 2011-2012 (state of the art analysis Europe)
- **DVGW** "Energy Measurement" and "H₂-Tolerance", 2012-2014

NaturalHY (Natural gas + Hydrogen) Project Contract No.: SES6/CT/2004/502661

- "...using the existing natural gas system for hydrogen"
 - Project duration 2003 2009
 - EU 6RP (39 Partner Gasunie, GDF, NUON, DBI, GERG, ...)
 - 8 work packages (LCA, Safety, Durability, Integrity, End Use, ...)
 - Funding: 17 Mio EUR
 - Comprehensive testing e.g. pipeline materials has been performed
 - Excerpt of findings
 - In the pipeline system no show stoppers has been identified.
 - Individual consideration of H₂ addition to the gas grid is recommended.
 - Note: Not all elements have been investigated in the frame of the project (underground storages, compressors, turbines etc. were out of scope)

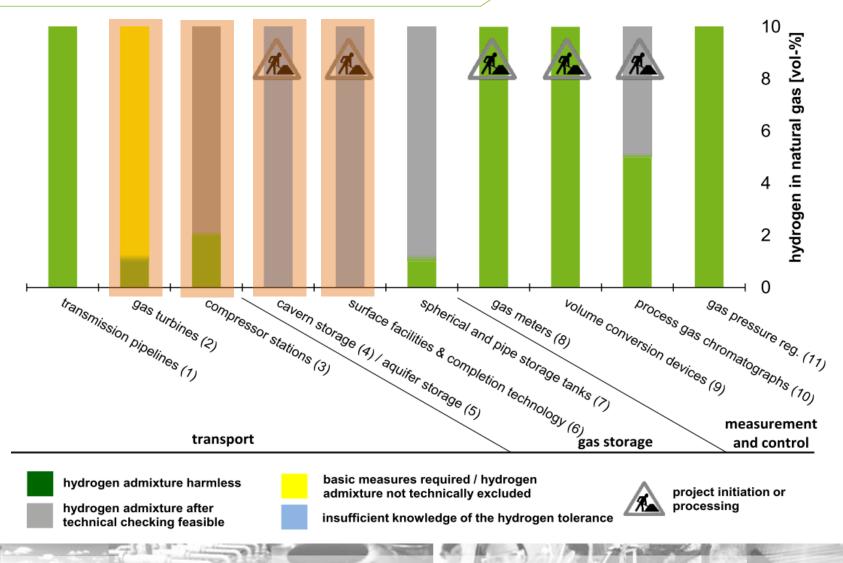
GERG HIPS-Project Main scope and selection of partners

State of the art analysis (performance, lifetime and safety):

- Gas transport and storage
- Gas distribution and utilisation

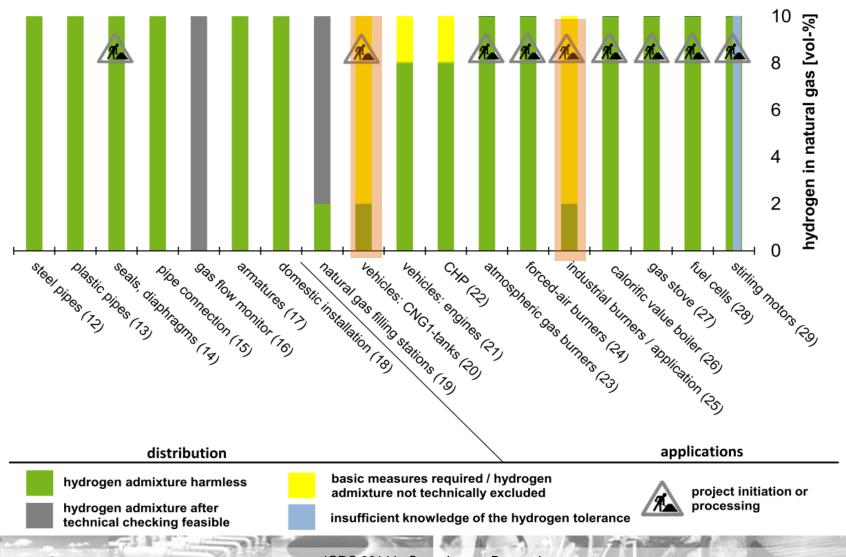
DVGW R&D project "Energy storage concepts " 2010-2012 (G10/07/1)

- **WP1**: H₂-tolerance (state of the art)
- WP2: SoA electrolysis and methanation technology
- WP3: Assessment of P2G locations
- WP4: Economic considerations
- Project partners:



- Findings are comparable
 - Case by case consideration is recommended before H_2 is injected.
 - Porous rock underground storages are currently considered as "show stopper" and need further investigation.
 - Most gas chromatographs will require modification.
 - It is recommended that manufacturers specifications should be followed, particularly when gas turbines or gas engines are connected to the network.
 - H₂-tolerance of CNG tanks need to be further investigated
 - Most parts of the natural gas system can tolerate admixture of up to 10 % by volume of H_2 .

Current state of knowledge H₂-tolerance results from DVGW project



17th-19th September 2014

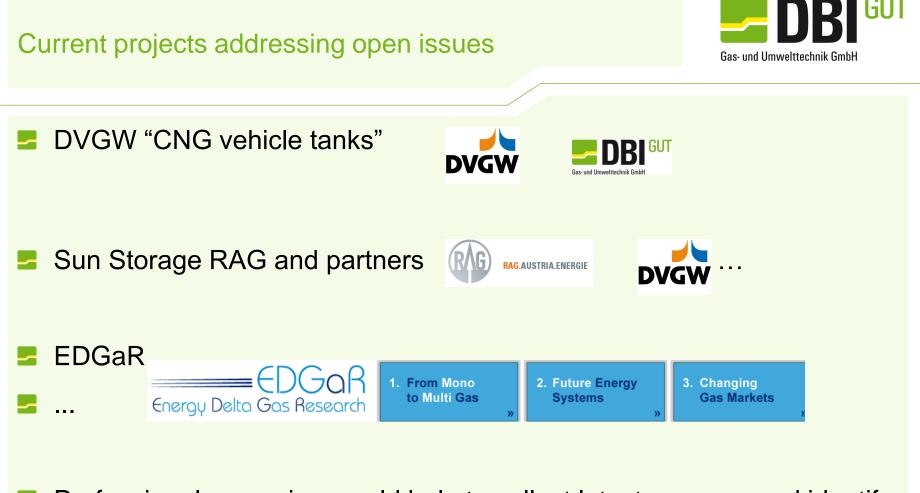
IGRC 2014 in Copenhagen, Denmark

13

Current state of knowledge Preliminary H₂-tolerance results from DVGW project

17th-19th September 2014

IGRC 2014 in Copenhagen, Denmark


Gas- und Umwelttechnik GmbH

PROJECTS RECENTLY LAUNCHED/UNDERWAY

Professional screening would help to collect latest answers and identify remaining open issues

WHAT HIPS NET CONTRIBUTES TO THE TOPIC

"ESTABLISHING A PAN-EUROPEAN UNDERSTANDING OF ADMISSIBLE HYDROGEN CONCENTRATION IN THE NATURAL GAS GRID"

- The NETWORK aims to establish a common European understanding of the H₂-tolerance of the existing natural gas grid.
- This is supported by
 - Professional "Technology Watch" which will acquire available information on the H₂-tolerance of the gas grid
 - Quarterly newsletter will be issued and distributed to the partners
 - An annual workshop (held 25th and 26th June in Brussels)
 - A short report that summarizes the latest findings
- If you are interested to join the network please contact <u>Gert.Mueller-Syring@dbi-gut.de</u> and <u>davepinchbeck@hotmail.com</u>
- HIPS NET is performed in cooperation with <u>www.gerg.eu</u>

HIPS NET Partners status quo

- 1 Gasum OY, Finland Infraserv GmbH & Co. Höchst KG,
- 2 Germany
- 3 KOGAS, South Korea ETIC (Energy Technology &
- 4 Innovations), Canada
- 5 Shell, Netherlands
- 6 DGC, Denmark
- 7 SVGW, Switzerland
- 8 Enagas, Spain
- 9 RWE Dea, Germany
- 10 Fluxys, Belgium
- 11 Volkswagen AG, Germany
- 12 E.ON New Build & Technology, UK
- 13 SGC, Sweden
- 14 nPlan GmbH, Germany
- 15 grzi, Germany

- 16 Synergrid, Belgium
- 17 Gasnatural, Spain
- 18 Solar Turbines Europe S.A.
- 19 EWE Netz GmbH, Germany
- 20 OGE, Germany RAG Rohöl-Aufsuchungs
- 21 Aktiengesellschaft, Austria
- 22 ÖVGW, Austria
- 23 Alliander, The Netherlands
- 24 ITM-Power, UK
- 25 GRTgaz, France
- 26 RWE Deutschland, Germany
- 27 Energinet, Denmark Verband der Chemischen
- 28 Industrie, Germany
- 29 GERG, Belgium
- 30 Gasunie, Netherlands
- 31 DNV

CONCLUSION

Conclusion

Up to now it is not set, who will produce, distribute and use e-gases in future.

Goal is a sustainable, macroeconomic feasible and robust energy supply.

 H_2 tolerance of the gas grid + establishing a European understanding →HIPS NET.

- This is a mandatory precondition for standardisation processes CEN/HYREADY.

- REN H_2/CH_4 + gas grid are the only long term storages (in many countries).
- Macroeconomic assessment is needed in order to give orientation to which

extend (in general) H_2 should be injected. That needs answering of a few still open technical question regarding the

DVGW takes over responsibility for technical clarification but demonstration has to be done by the companies.

Energie mit Zukunft. Umwelt und Verantwortung.

Thank you for your attention!

Contact

Gert Müller-Syring

Head of Department Gas Grids

DBI Gas- und Umwelttechnik GmbH Karl-Heine-Straße 109/111 D-04229 Leipzig

Tel.: (+49) 341 24571-29 Fax: (+49) 341 24571-36

E-Mail: gert.mueller-syring@dbi-gut.de Web: www.dbi-gut.de

Who is DBI and which role plays P2G within DBI?

- 4 Departments plus training centre and certification laboratory
- 60 employees
- Owned by DVGW
- More than 10 P2G related projects in the last two years
 - Planning of P2G injection plant for town utilities Mainz
 - Site assessment for 50 Hertz, Greenpeace Energy, ONTRAS...
 - Consultation for RWE (H₂ injection)
 - Establishing and running HIPS-NET together with GERG...

Oil/Gas Product./Storage

Gas Grids Gas Systems

Gas Utilization

Gas Chemistry Gas Measurement

DVGW-

Testing Lab

DVGW-Training Center Gas

17th-19th September 2014

IGRC 2014 in Copenhagen, Denmark