

EXPERIMENTAL REFERENCE DATABASE OF MECHANICAL DAMAGE DEFECTS FOR DEVELOPING AND VALIDATING DEFECT ASSESSMENT MODELS

M. ZAREA, R. BATISSE, P. CARDIN – GDFSUEZ, France

B. LEIS - Battelle Institute Columbus, Ohio, USA

PRCI Projects on Mechanical Damage Assessment - MD-4

- Two projects are presented here:
- MD-4-1: Full-Scale Experimental Validation of Mechanical Damage Assessment Models– Dent & Gouge defects: GDF SUEZ R&I Division
- MD-4-4: Improved Model for Predicting the Time/Cycle Dependent Behavior of Dent+Gouge Damage: Battelle Columbus
- Other projects too, not developed here:
- MD-4-2: Full-Scale Demonstration of the Interaction of Dents with Localized Corrosion and Welds: BMT Fleet
- MD-4-3: Improved Model for Predicting the Burst Pressure of Dent + Gouge Damage: Kiefner & AFAA
- MD-4-5 to MD-4-10: Strain in dents, Defects for inspection, etc.

ADING PIPELINE RESEARC

MD-4-1: Full Scale Experimental Database for MD – Dent+Gouge

- Objective: Provide detailed Experimental Database on realistic Mechanical Damage "dent + gouge" defects
- **Detailed Experimental Database means:**
 - Material characterisation is very complete
 - Replicate tests are performed to characterise the damage, burst test it, and fatigue test it
 - A very detailed set of instrumentation was defined in interaction with the modelling teams for both burst and fatigue tests
 - Detailed post-failure investigations are performed on both burst tested and fatigue tested samples
- *Realistic* Mechanical Damage means:
 - Dent and gouge created simultaneously by excavator tooth impact
 - Pipe is pressurised, representative of in-service damage

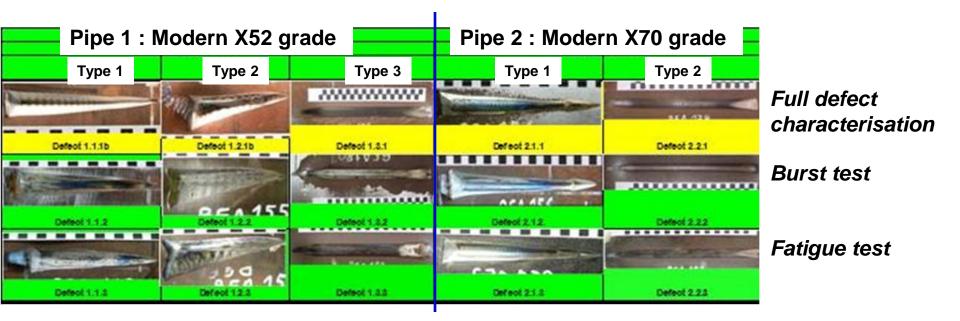
MD-4-1: Full Scale Experimental Database for MD – Dent+Gouge

Instrumented Defect Creation under pressure / Detailed Characterization

Dynamic, sharp tooth Deep gouge (single) Slower, worn tooth

Instrumented Burst test (monotonic load)

Instrumented Fatigue test (cyclic load)



MD4-1: Dent+Gouge on Modern Pipe

• Project overview – Test matrix for modern pipes (1/2)

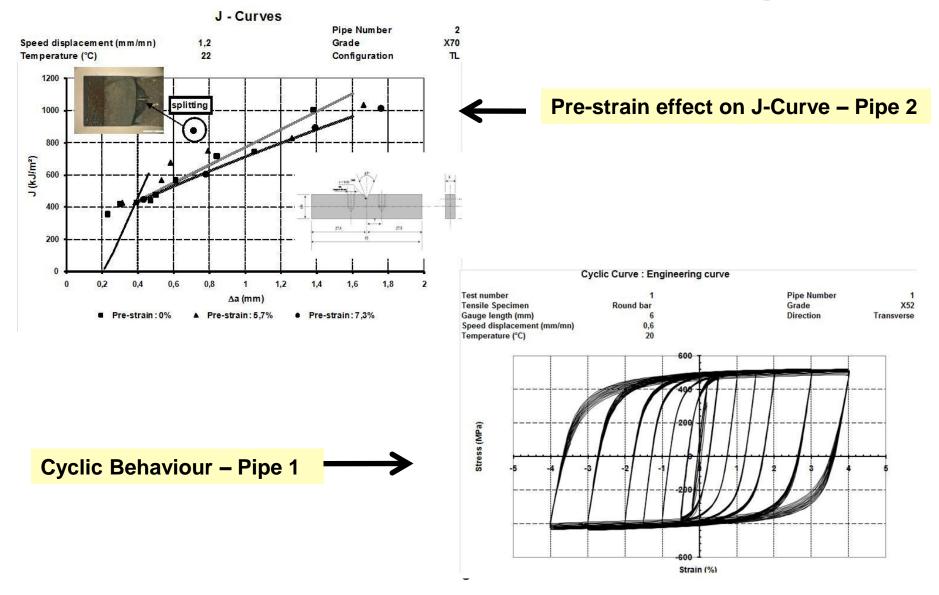
DOT # 339 + MD-4-6 : Dent + Gouge on Vintage pipe

• Project overview – Test matrix for vintage pipes (2/2)

DOT # 339		MD 4-6		
Pipe 4 (older steel)		Pipe 3 (older steel)		
Type 1	Туре 2	Type 1	Туре 2	
Defect 4.1.1	Defect 4.2.1	Defect 3.1.1	Defect 3.2.1	Full defect
				characterization
Defect 4.1.2	Defect 4.2.2	Defect 3.1.2	Defect 3.2.2	Burst test
Defect 4.1.3	Defect 4.2.3	Defect 3.1.3	Defect 3.2.3	Fatigue test

• Pipes just selected, work will start before year's end

MD-4-1: Material Characterisation Modern X52 and X70 grades


- Chemical composition : low carbon < 0.05%, clean (%S < 0.005, P%<0.010)
- Tensile properties : Isotropic YS longi/YS transverse > 95%, UTS longi/UTS transv >98%, almost X65 for specified X52 and almost X80 for specified X70
- Toughness : Very high : Charpy > 150J/cm² or 137 ft.lb at 20°C, high Energy J-Curves
- Pre-strain effect on toughness : No significant effect for strain range [0%, 8%]
- Cyclic behaviour : slight softening with cyclic load

Conclusion: Excellent Modern Steels Isotropic, High Strength, High Toughness, Very ductile

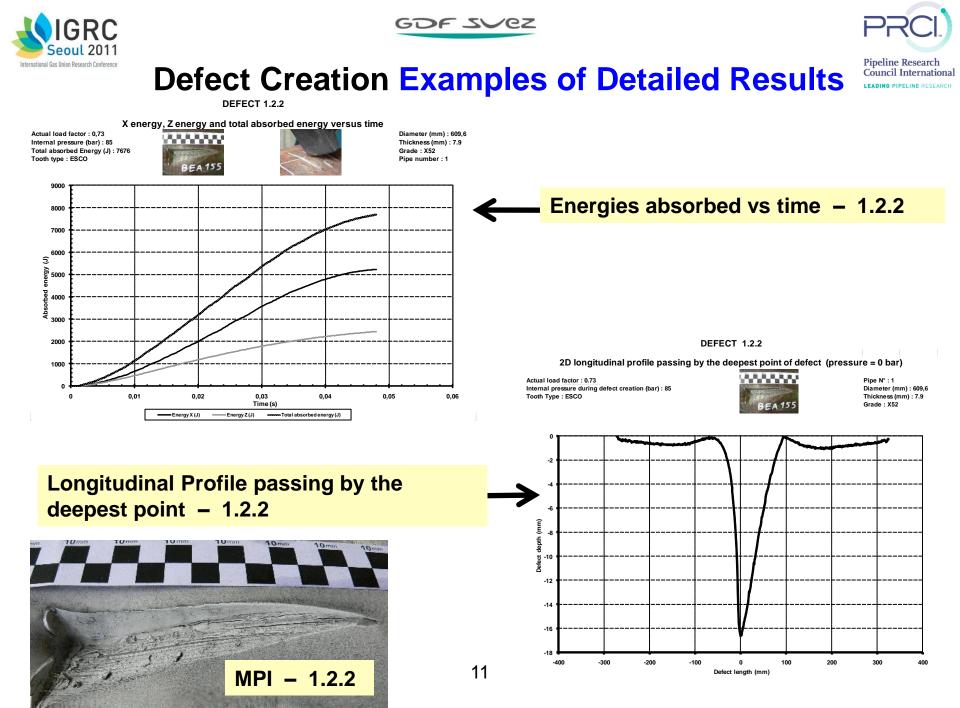
Material Characterisation examples Pipeline Research Council International LEADING PIPELINE RESEARCH

Pipeline Research

Council Internationa

Defect Creation - Data gathered

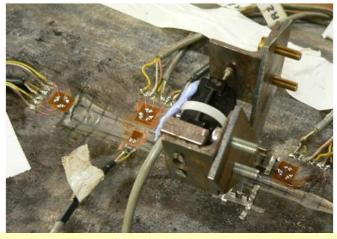
- Data on agression :
 - Tooth Geometry, tooth trajectory incidence angle
 - Time histories of Forces, Energy, Displacements
 - Internal strain gauges (optional) vs. time
- Defect characterization :
 - Defect Size (length, dent depth, gouge depth) by laser mapping
 - Magnetic Particle Inspection results (crack detection at gouge surface)
 - Only for defect X.Y.1 dedicated to destructive characterization:
 - Residual stress determination
 - Destructive metallurgical investigation :
 - Microstructure under defect
 - Micro-cracks: presence and size distributions
 - Rough experimental estimate of plastic strain

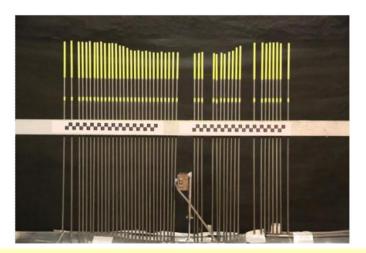


Pipeline Research Council International

Defect Creation - Global Results

						I COURT	LEADING DIDELINE DECEADO
Defect	Tooth	Aggression	Energy (J)	Pressure (bar)	Dent depth (%)	Gouge depth (%)	Gouge length (mm)
1.1.1b		D	3424	85	1.1	26.5	135
1.1.2	Sec.		4713	85	1.6	6.3	150
1.1.3	Cal44		-	85	1.3	11.3	135
1.2.1b	en vite	D	5816	85	2.6	43.0	110
1.2.2	100		7676	85	2.6	34.2	115
1.2.3	Esco		6145	85	2.5	46.8	105
1.3.1			34930	30	5.3	27.8	331
1.3.2		SD	28312	30	5.9	29.1	375
1.3.3	C481		23973	30	6.1	20.2	321
2.1.1			7331	85	1.5	22.2	175
2.1.2		D	5912	85	1.6	18.9	200
2.1.3	Cal44m		4907	85	1.5	20.0	165
2.2.1		SD	33974	20	4.7	20.0	331
2.2.2	BEA		26726	20	5.2	16.7	353
2.2.3	C481		28412	20	5.3	21.1	319



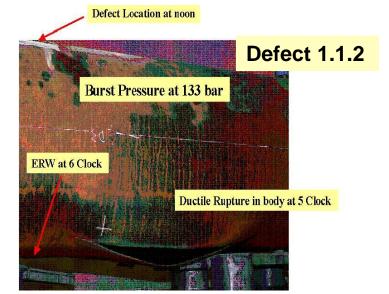


Burst test – Instrumentation

- Strains:
 - 3 or 4 strain gauge rosettes at different locations along gouge edges
 - 1 circumferential strain gauge at the gouge bottom
 - Longitudinal and circumferential internal strain gauges under the defect (optional)
 - Reference Strain gauges on pipe wall away from defect.
- Displacements:
 - Opening Clip gauge over the gouge
 - Dent dynamic profiler with multiple rods to record evolution of longitudinal defect profile during pressure increase (optional)
 - Camera (optional)

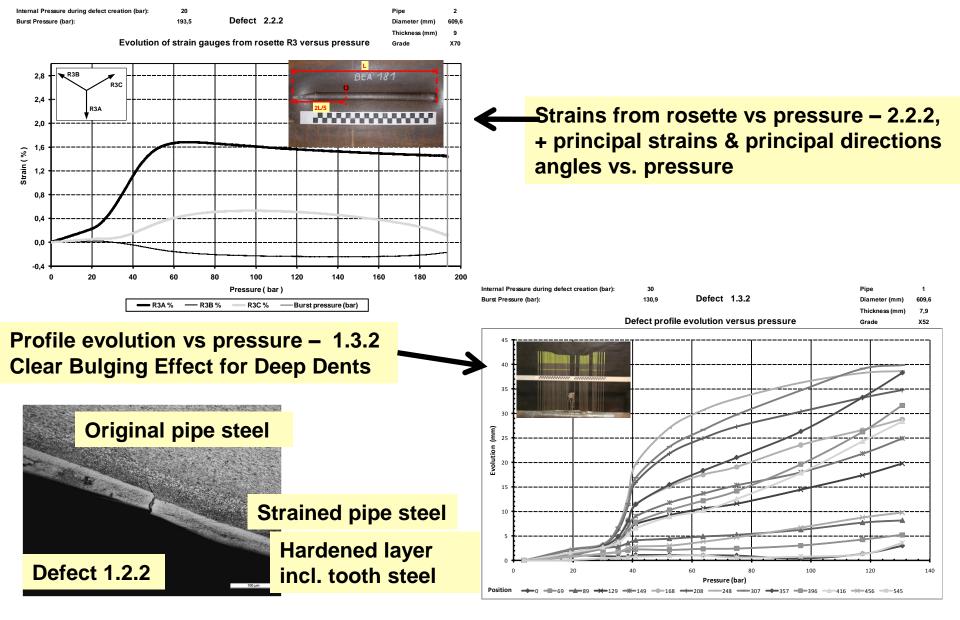
Defect 2.1.2 – Opening clip gauge

1 Defect 2.2.2 – Dent dynamic profiler



Burst tests – Summary of Results

Defect	Failure Pressure (bar)	Theoretical failure pressure of pipe body (Barlow formula)	Comments
1.1.2	133.3	132.7 — 146.0 (UTS=512 MPa-563.2MPa)	Failure outside of defect in pipe body (not in seamweld ERW)
1.2.2	110.3	132.7-146.0	Ductile Failure in defect
1.3.2	130.9	132.7-146.0	Ductile Failure in defect
2.1.2	185.1	185.4 — 204.0 (UTS=628 MPa-691 MPa)	Ductile Failure in defect
2.2.2	193.5	185.4 - 204.0	Ductile Failure in defect

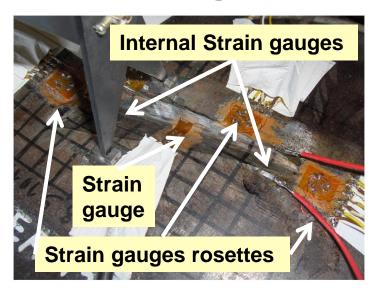


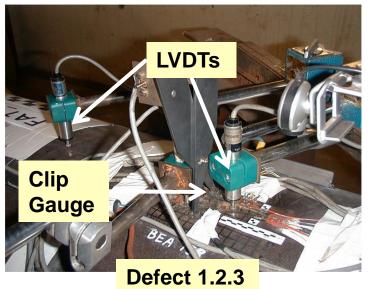
Burst tests: Examples of Detailed Results

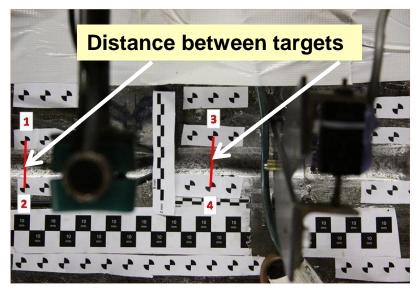
LEADING PIPELINE RESEAR

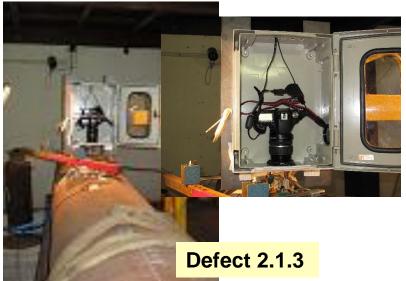
Fatigue tests - Instrumentation

- Strains :
 - 3 or 4 rosettes at different locations along gouge edges
 - 1 circumferential strain gauge at the gouge bottom
 - Longitudinal and circumferential internal strain gauges under the defect (optional);
 - Reference Strain gauges on pipe wall away from defect
- Displacements :
 - Opening Clip gauge over the gouge
 - Targets on each side of gouge with camera (optional)
 - 1 LVDT in defect
 - 1 LVDT on pipe body for reference
- Detection of crack-initiation, crack propagation and leak :
 - Potential Drop
 - Targets on each side of gouge with camera (optional)

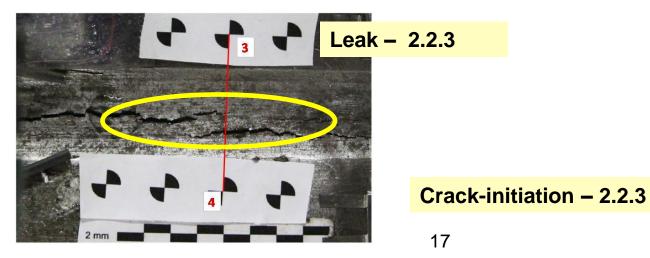


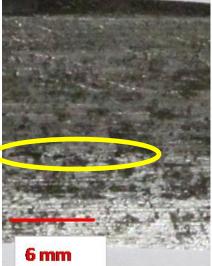





LEADING PIPELINE RESEARCH

Fatigue tests - Instrumentation





Fatigue tests – Summary of Results Pipeline Research Council International

Defect	Pmin - Pmax (bar)	Number of cycles to failure	Comments
1.1.3	45 bar – 85 bar	10869	Several interruptions of fatigue test
1.2.3	45 bar – 85 bar (0.38 – 0.73 YS)	5200	
1.3.3	53 bar – 93 bar (0.46 – 0.80 YS)	20494	Cycling loading above the pressure range of bulging
2.1.3	88 bar – 128 bar (0.55 – 0.80 YS)	17700	Pressure max at 0.80 of current YS
2.2.3	20 bar – 60 bar (0.12 – 0.37 YS)	2007	Cycling loading in the pressure range of bulging

Pressure min (bar)

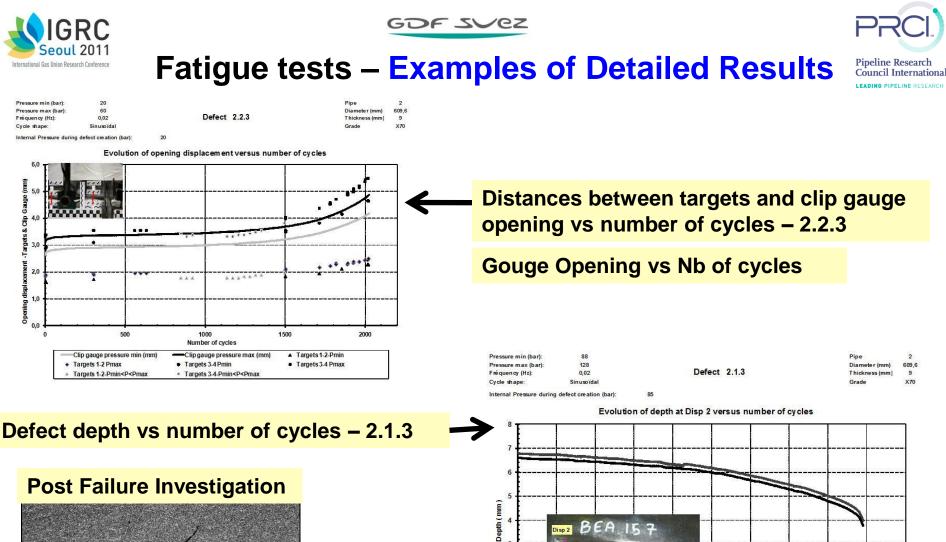
Pressure max (bar):

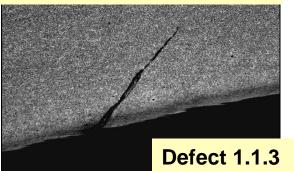
Fréquency (Hz):

Cycle shape:

2.0

0


Opening 0.0



2

9

X70

Dent Rerounding vs Nb of cycles

8000

10000

Number of cycles

12000

14000

-Depth at Disp 2 pressure max (mm)

16000

18000

20000

2

0 0 Disp 2

2000

2 2 2 2 2 2 2 2 2

6000

-Depth at Disp 2 pressure min (mm)

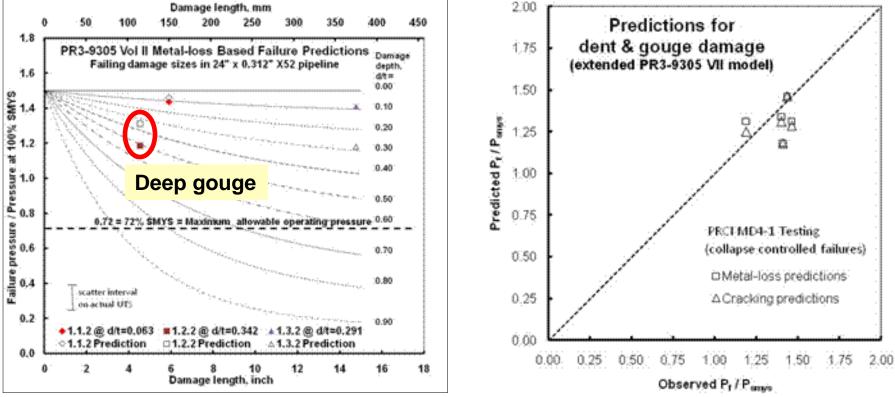
4000

Fatigue modelling - 1st Approach

- Four key parameters control predicted life:
 - Local stress range sensed by the crack tip
 - Threshold for growth
 - Initial and final crack sizes

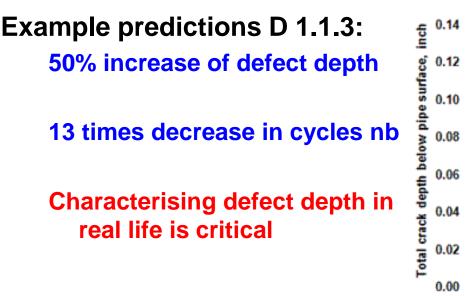
$$N = \int f(\Delta K) da$$
,

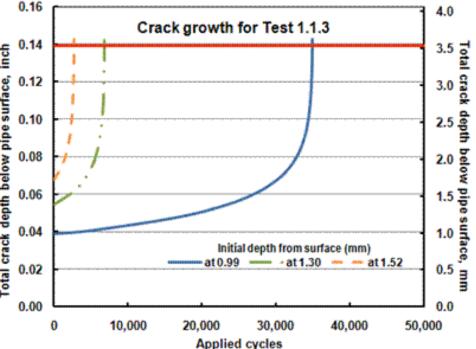
- Initial crack size is of paramount importance, relatively uncharacterized as yet for Mechanical Damage
- Before performing Nonlinear Analysis, influence of D, D/t and properties on Final Crack Size can be assessed by using existing information as a 1st approach – trending based on PRCI project PR3-9305



Fatigue modelling - 1st Approach

- Burst test prediction for Pipe 1 X52 using PR3-9305:
 - Failure pressure normalised by pressure at 100% SMYS vs. Defect length
 - Damage depth / wall thickness as a parameter
- Good predictions for Final Crack Depth, nonlinear analysis needed before general application – here all failed by Plastic Collapse





Fatigue modelling - 1st Approach

- Predicted Fatigue life:
 - Total Defect depth = µcrack + gouge has to be accounted for
 - Cracking upon rerounding is a key factor depends on material toughness and crack driving force
 - Initial crack sizes in MD-4-1 range from 6% to 36% of wall thickness
- Sensitivity study showed Initial crack size its the leading parameter
- Nonlinear rerounding & material behaviour analysis will refine model

Conclusions - Experiments

- New realistic and very detailed modelling driven experimental database on Mechanical Damage Dent & Gouge defects:
 - Significant experimental advances were achieved: internal strain gauges, tracking of rerounding during burst (detailed) and fatigue tests (local), defect opening history tracked, etc.
 - Two extreme defect families investigated more deeply shallow dent and moderate gouge / deep dent and moderate gouge
 - Highly dynamic impact with sharp tooth generates a very hard superficial layer with µcracks 0.1 to 0.2 mm deep, not the case for slower aggressions with worn tooth
 - First stage on Modern tough steels burst failure by plastic collapse, moderate damage no significant decrease in burst pressure
 - For deeper dents, influence of the pressure cycling range w/r to the bulging pressure was established – cycling just above defect creation pressure minimises fatigue life

Conclusions - Modelling

- First approach to modelling fatigue life explored:
 - Burst strength evaluation based on existing technology is promising
 - Fatigue strength evaluation & sensitivity study showed importance of knowing initial defect depth
 - Non linear effects of rerounding effects, of nonlinear material not explicitly accounted for

Conclusions – Further work

- Experimental work :
- Will go on with tests on vintage pipes
- Non-destructive evaluation of residual stresses by neutron diffraction will be finalised – a strong contribution to be accounted for in models
- Modelling work:
- Non-linear analysis will be performed to fill the gaps:
- Influence of rerounding, changes in material properties, etc.
- Outcome for industry: better founded & more accurate models for mechanical strength of Dent and Gouge defects

We're Done!

Thank you for your attention

Any questions?