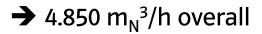

Next generation biomethane technologies - experiences and further prospects

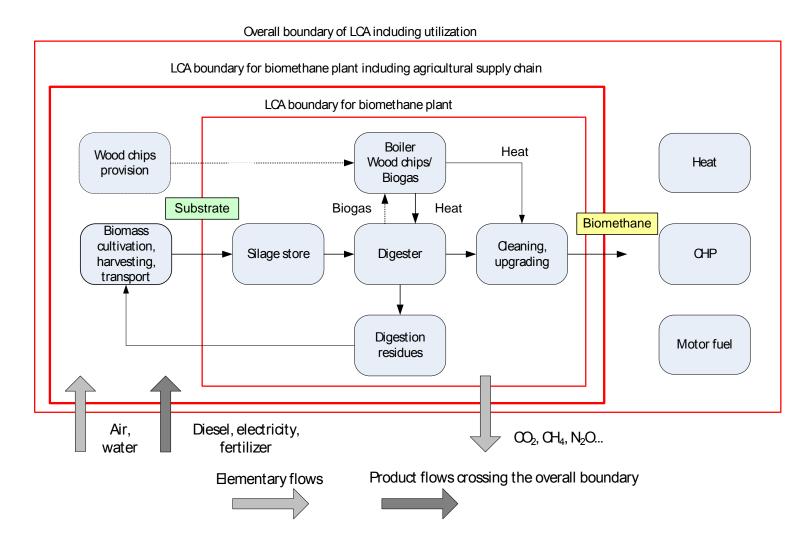
Jean Relus Beining, Alexander Vogel (E.ON Ruhrgas AG) Stephan Ramesohl (E.ON AG) IGRC, Seoul, October 2011

- Biomethane is one of the most **flexible** bioenergies:
 - It can be produced from energy crops, agricultural residues and waste
 - By using the natural gas network, heat, power and fuel applications are accessible
 - Biomethane can be stored and provides excellent security of supply
- Biomethane is one of the most **efficient** bioenergies


eon

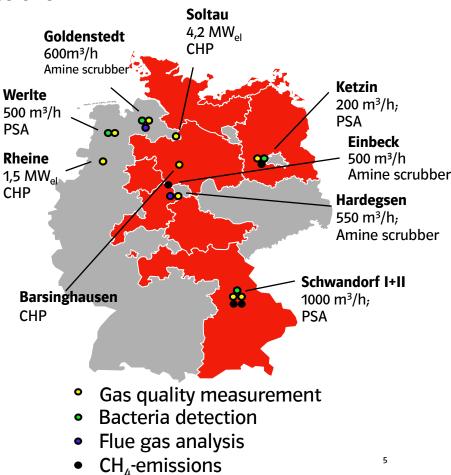
- Biomethane plants in Germany:
 - 46 Plants in operation
 - 65 under construction

- \rightarrow 32.500 m_N³/h overall
- \rightarrow 43.500 m_N³/h overall
- Biomethane plants within the E.ON group:


Schwandorf II	E.ON Bioerdgas	1000 Nm³/h	02/2008
Einbeck	E.ON Bioerdgas	500 Nm³/h	09/2009
Aiterhofen	E.ON Bioerdgas	1000 Nm³/h	10/2009
Merzig	E.ON Bioerdgas	550 Nm³/h	05/2011
Hallertau	E.ON Bioerdgas	700 Nm³/h	2012
Ketzin	E.ON Edis-therm	200 Nm³/h	04/2008
Hardegsen	E.ON Mitte Wärme	550 Nm³/h	02/2009
Stausebach	E.ON Mitte Natur	350 Nm³/h	2011

Stand 08/2011

Basic Processes of the Biomethane Plant in Einbeck


Comprehensive analyses of German biomethane plants

Analysis of biogas for compliance with applicable rules and regulations, effects on gas infrastructure, harmful bacteria and CH₄ emissions

• Gas properties

eon

- Microbiological analysis
 - Raw biogas
 - Conditioned biomethane
 - Condensate
- CH₄ emissions
 - GasCam tightness check
 - Gas concentration measurement with CH₄ detector

Gas Properties – Plants Examined

Location	Substrate	Tratement PSA	Treatment Amine plant	Injetion into gas grid	CH ₄ - Measurements
Schwandorf I	M / G				х
Rheine	M / GÜ				
Soltau	M/CCM/G/HTK				
Barsighausen	Z				
Goldenstedt	M / G		Х		
Schwandorf II	M / G	х		х	Х
Ketzin	M / G / GE	х		х	Х
Hardegsen	M / G		х	Х	Х
Werlte	GÜ / SA	х		x	
Einbeck	M / G		Х	Х	Х
Aiterhofen	M / G	х		X	Х

- $M \rightarrow Maize silage$
- $G \rightarrow Grass silage$
- $G \ddot{U} \ \ \rightarrow \ \ Liquid\ manure$
- $\mathsf{CCM} \to \mathsf{Maize \ grains}$

- HTK \rightarrow Dry chicken dung
 - → Sugar beets
- $\mathsf{GE} \ \rightarrow \ \mathsf{Grain}$

Ζ

SA \rightarrow Slaughterhouse waste

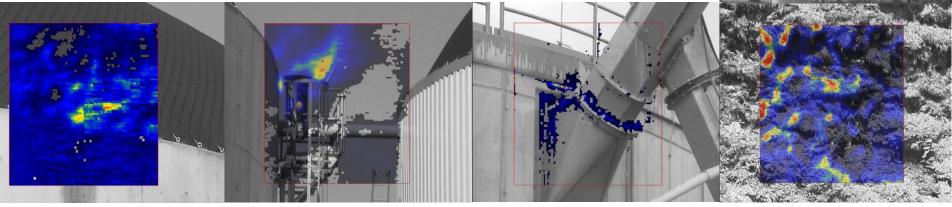
Biogas injection plant emissions measurement

Microbiological Analysis

Samples: raw biogas; liquids obtained after treatment; pure biogas

Method: bacteria DNA with specific polymerase chain reaction (PCR)

Bacteria group	Negative effect on	Potentially negative effects	Test result (pure gas)
Methane-decomposing bacteria (methane oxidizers)	Gas quality	CH4 + 2 O2 ¬> CO2 + 2 H2O	No methane-decomposing bacteria found
Corrosive bacteria (sulfate reducers)	Gas infrastructure	Corrosive H2S	No corrosive bacteria found
Harmful germs (pathogenic bacteria)	Gas user	Harmful effects on health	Only opportunistic germs found


Biogas injection plant emissions measurement

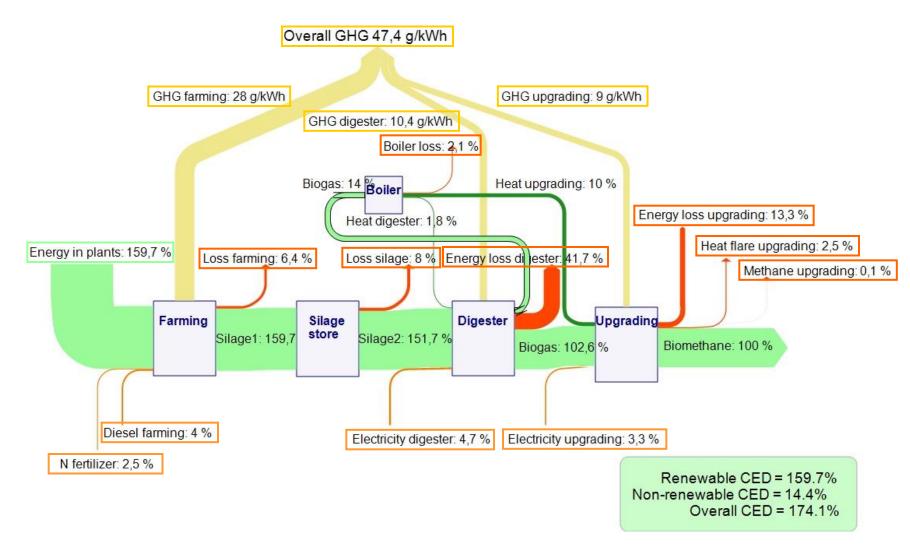
CH₄ Emissions – Qualitative Measurement

- GasCam tightness test
- CH₄ detector to measure gas concentration
 - Ketzin
 - Schwandorf I
 - Schwandorf II
 - Einbeck

Waste gas, PSA SADII

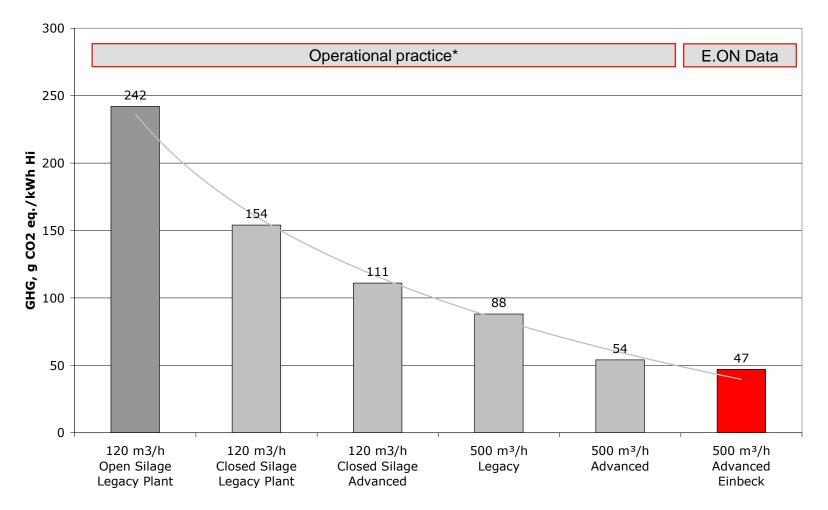
(0.5 vol% according to Gas Network Access Code)

Sheet sealing, SULER SAD I


Pressure relief device, SULER SAD I

Conveyor, Ketzin

Bunker silo joint, SAD II



Results – Energy/GHG Flow Diagram for Biogas Heating

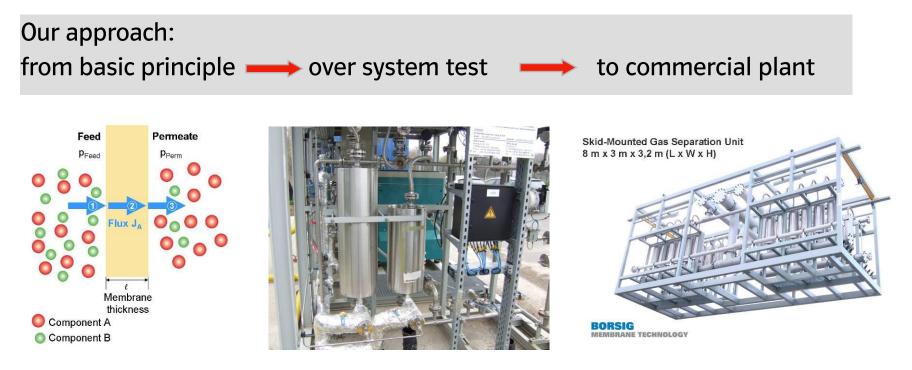
Reduction of GHG by Technical Progress

*Source: "Basis Data for GHG Inventories of Biomethane Processes", Institute for Energy and Environment Research, Heidelberg, Internal Study, April 2008

Membrane Technology for Biogas Upgrading

Conventional upgrading technologies (water, amine treatment, PSA):

- Intermediate storage medium liquid (water, amine solution) or solid (active carbon) for CO_2 are necessary
- Regeneration of the storage medium requires energy (heat or electricity)
- Storage media handling raise additional investment, maintanance and operation costs


Membrane upgrading technology - key benefits:

- No intermediate CO₂ storage
- Simple upgrading plant design
- Continuous process

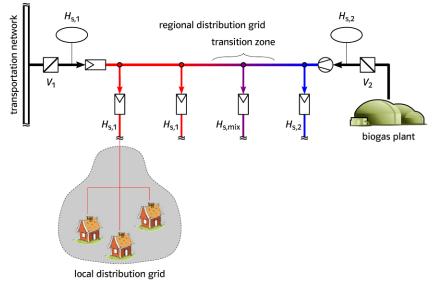
Performance and durability tests of membranes under operational conditions
Cooperation with an equipment manufacturer

Membrane Technology for Biogas Upgrading

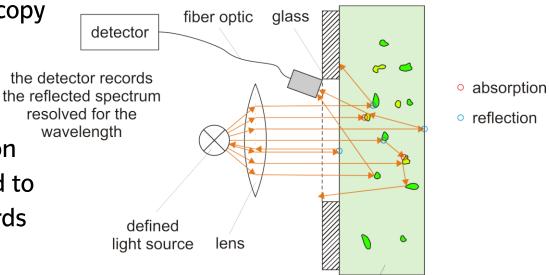
- Innovative 'dry' biomethane upgrading technology, no auxiliary media
- Energy efficient and flexible
- Low maintenance costs, simple process control

Membrane Test Rig in Kirchlengern – General View

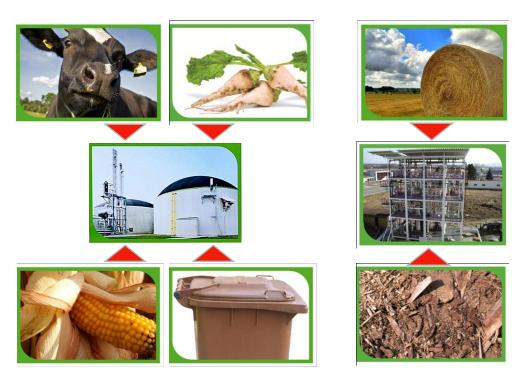
Membrane Test Rig – Envelope/Spiral Wound Modules



Membrane Test Rig – Hollow Fiber Module



- Odorant removal:
 - Regional distribution network: biogas with odorant injected
 - Transportation network: biogas without odorant injected
 - In case of low gas consumption the increased volumen of (bio)gas has to be fed from the distribution grid back to the transportation network
 → odorant has to be removed
 - Special adsorbents are developed for odorant removal
- Gas quality tracking:
 - Calculation of gas quality (natural gas / biogas)
 - LPG injection not needed
 - Software tools developed by E.ON



- Efficient production of biogas needed to yield the most biogas from either energy crops or organic waste
- High space-time yield possible via elaborate measurement technologies
- Novel measuring technologies are testet by E.ON:
 - continuous analysis of biomass input
 - analysis of the digestion media
- Ultrasonic biogas meters
- Near infrared spectroscopy (NIRS)
- First results show a high degree of precision
- The results will be used to develop a model towards process automation

- New energy crops:
 - Adaption to different soil qualities possible
 - Permanent cultures lead to lower fertiliser demand and reduced farming costs
 - Low fertiliser demand leads to improved carbon footprint
- Residual biomass:
 - No seeding / cropping needed
 - very high GHG emission reduction possible
 - Adapted biogas technologies needed
- Woody biomass:
 - Conversion via

thermo-chemical gasification allows for feedstock diversification

Bio-SNG – 2nd Generation Biomethane from Wood

solid biomass

Bio-SNG production plant

all utilisation options

- Innovative process for production of methane from woody biomass as
 - "second main pillar" of E.ON's renewable gas production ?
 - high efficient and flexible alternative on power production and CHP?
- Existing feedstock access of E.ON as biomass power plants (e.g. full conversion and new built sites) could be used

	Biomethane	Bio-SNG
Feedstock source	Biogas substrates e.g. energy crops, residues	Lignocelluloses wood (resid., crops), straw
Methane Potential (D) 2020 [m ³ /a]	> 6 bn from crops	> 3 bn from forest
Process	Bio-chemical	Thermo-chemical
Development Status	Mature Technology	Demonstration
Scale (Status/ commercial) [MW]	10 ⁰ - 10 ¹	10 ⁰ / 10 ¹ - 10 ³
Technology provider	Small scale companies	Chemical plant vendors
Specific Investment Costs [€/MW _{CH4}]	~ 2000	1600 - 2200 (?)
Gas Production Costs [€ct/kWh]	7 - 8	6.5 - 8.5 (?)
GHG-Emissions [g _{CO2eq.} /kWh _{CH4}]	47-120	20-100 (?)

Bio-SNG is not yet "the mature silver bullet", but it could act as future "second main pillar" for the diversification of E.ON's renewable gas production.

Thank you.

Dr.-Ing. Stephan Ramesohl Vice President Innovation Portfolio Management Technology & Innovation, E.ON AG stephan.ramesohl@eon.com