

25th world gas conference "Gas: Sustaining Future Global Growth"

THE IMPACT OF METER READING CYCLES AND ALLOCATION PROCESS ON UFG

By: Catela Pequeno, Galp Energia, Portugal Lilian Berterreche, GrDF, France Date: June, 2012 Venue: Room 302/3

Host

Host Sponsor

DEFINITION OF UNACCOUNTED FOR GAS

KUALA LUMPUR 2002 NOEM ANTERNATIONAL GAS UNION NOEM ANTERNATIONAL GAS UNION NOEM ANTERNATIONAL GAS UNION

UFG can be defined as the

Difference between the gas entering a distribution system at the point of custody transfer and that which can be measured and billed at all delivery points over a defined period of time.

- UFG is a measurement of global efficiency of operation
- It impacts the overall economics of the business

UNACCOUNTED FOR GAS CAUSES

- UFG has several causes
 - 1. Physical causes
 - 2. Accuracy
 - Consumption estimation errors inherent 3. to the information circuits established

Leaks Commissioning decommissioning of pipelines Theft Meter accuracy **Reading mistakes** Calorific value of the gas Meter Reading Cycles and

> Allocation procedures

The lack of timely consumption information to use in the Allocation process will also cause UFG

UFG

- Transport System Operators (TSO) must keep the balance of transport network
- Unbalances result in pressure variations Line Pack
- Variations in the Line Pack result in variations of the Gas stock

MANAGING BALANCE OF THE GAS SYSTEM WITH SEVERAL SUPPLIERS

- In Liberalized Markets
 - TSOs do not own gas
 - Stock is divided by the Suppliers according to network usage
 - Individual stock must be kept within defined limits
 - Individual stock changes with the pipeline pressure and inlet/outlet flow

Stock unbalances must be allocated to each Supplier and settled

THE ROLE OF READING CYCLES & ALLOCATION IN THE MANAGEMENT OF THE GAS SYSTEM – A THREE STEP PROCESS

- The Nomination phase (day D-1)
 - Suppliers inform the TSO about the quantities they will inject in the transport grid to cater for their costumers needs in day D
- Day D
 - TSO measures the actual quantities that entered and left the network
- The Allocation phase (day D+1)
 - DSO allocate the actual quantity of gas delivered to the distribution network to the Suppliers according to the actual consumption of their costumers

Day =>		D-1	D	D+1
Process =>		Nomination (Kwh,m3)	Measurement of the gas at the outlet of transport grid	Allocation (Kwh,m3)
Supllier	#1	x1		y1
	#2	x2	Y	у2
			(Y≠Σx)	
	#n	xn		yn
		Sum(x1,x2,xn) =X	Mandatory condition:	Sum(y1,y2,yn) =Y

THE ROLE OF READING CYCLES & ALLOCATION IN THE MANAGEMENT OF THE GAS SYSTEM – STOCK CALCULATION

- Stock is evaluated for each Supplier
- Nominated (xi) and allocated (yi) quantities are used

		initial stock	Δ stock	final stock	
Overall balance		Si	Δ	Sf	
Supllier	#1	s1i	δ1=x1-y1	s1f	
	#2	s2i	δ2=x2-y2	s2f	
	#n	sni	δn=xn-yn	snf	
		Sum(s1i,s2i,sni)=Si	Δ =sum(x)-sum(y)	Sum(s1f,s2f,snf)=Sf	
		$Sf=Si+\Delta$			

- Each supplier's stock must be within limits defined by TSO: s#n min < s#n < s#n max
- Penalties apply to non-compliant Suppliers

THE ALLOCATION PROCESS AND IT'S SHORTCOMINGS

Allocation is a simply process

Allocation to Supplier $x = \sum_{\text{Client 1}}^{\text{Client n}} Consumption of Client ix$

TotalGasdelivered =
$$\sum_{\text{Supplier 1}}^{\text{Supplier n}} Allocation to Supplier x$$

- But have a few problems that must be addressed
 - Consumptions of customers without telemetering are not know on a daily basis
 - In this cases, meters must be read by an operator
 - Reading cycles are not synchronized with the allocation process
- In these cases consumption must be estimated
 - Estimation process brings along errors

THE ALLOCATION PROCESS – ALLOCATION AND READING CYCLES

- Magnitude of estimation error depends on consolidated allocation cycle
 - Telemetered costumers will always have real consumption data; but
 - On daily allocation cycles all other costumers will have to be estimated
 - On monthly allocation cycles a mix of real and estimated consumptions will coexist

- Estimation quality depends also on the Reading Cycle
 - The longer the reading cycle, the greater the uncertainty of the estimation

THE ALLOCATION PROCESS – THE GENERAL CASE OF ALLOCATION AND READING CYCLES

- VIGUE DAS CONTEINES
- And the picture gets worst if we think about the multitude of superimposed reading cycles...

DEPENDENCE OF THE ALLOCATION CYCLE ON THE READING CYCLE – THE DIFFICULTY TO ESTIMATE CONSUMPTIONS

- Allocation requires timely consumption information
- Information is not available for every type of costumer
- Estimation methods are used with an error
- Allocation equation must be reviewed to take this error into consideration
 - No longer Y = Sum (y1, y2, ..., yn)
 - But Y = Sum (y1, y2, ..., yn) + error
- Errors are UFG and represent a cost
- Cost will have to be borne by the business players according to regulatory framework

COPING WITH SHORTCOMINGS – TWO LINES OF IMPROVEMENT

- KUALA LUMPUR LITERATIONAL GAS UNION INTERNATIONALE BU EAX WORD GAS COMPLETING
- Improve accuracy of consumption calculation
 - Reduce length of reading cycles;
 - Install as much telemetering as possible;
 - Manage reading procedures to enhance results
 - Enforce meter reading on switching and end user contract termination
 - Refine estimation methods
- Develop good allocation algorithms
 - Use as much actual data as possible
 - Access to end user data base information is most important
 - Requires IT developments
 - Requires large number-crunching capabilities
 - Depends on regulatory framework

COPING WITH SHORTCOMINGS – CONSUMPTION ESTIMATING PROCEDURES

- Estimation models can be complex
 - Consumption = f(Temperature, Pressure, type of customer, events)
 - Complex models are more difficult to fine tune
 - Individual consumption and a population consumption behave differently
- Practical methods are:
 - Consumption profile For each day of the year according to the costumer type
 - Corrected consumption profile Corrections for ambient temperature, day of the week, atmospheric pressure, etc. – Temperature adjustment is commonly used
 - Homologue consumption Estimate the daily average consumption of the last year, around the same period and assume it will be the same this year
 - Corrected homologue consumption Homologue consumption corrected for atmospheric conditions and sustained differences of consumption habits

COPING WITH SHORTCOMINGS – ALLOCATION ALGORITHMS THE PORTUGUESE MODEL

CP=Connection Point

Difference=Delivered Gas – Estimated Consumption – Measured Consumption

orgia galp energia

KUALA LUMPUR

GU

COPING WITH SHORTCOMINGS – ALLOCATION ALGORITHMS THE PORTUGUESE MODEL

Type of Customers connected to the network branch

Difference to be distributed

Quantity measured by TSO – measured quantity – estimated quantity

COPING WITH SHORTCOMINGS – ALLOCATION ALGORITHMS THE GRDF MODEL

- GrDF developed a three component "Loss Model"
- Estimates or measures consumptions
- Adjusts the gas balance with a factor F

Energy Supplied - Losses = F x Sum (estimated quantities) Allocated Quantities = F x Sum (estimated quantities)

 $Loss = 2/3 \times (A+C) + 1/3 \times B$

- Daily estimation for each customer
- Current account is kept for each customer
- Current account is settled when the customer is read (every 6 month)
- GrDF supports the loss until account is settled (reconciliation)

Consumption

SUMARY

- Liberalized Gas Markets require timely information on customer consumption for the allocation process
- Meter reading cycles do not match with allocation requirements
- The lack of timely information leads to consumption estimation and inherent errors
- Errors are UFG
- UFG is borne by the business players
- Depending on the allocation algorithm used the burden will rest on the DSO or on the Suppliers side.

THANK YOU FOR YOUR KIND ATTENTION