

25th world gas conference "Gas: Sustaining Future Global Growth"

New Processes for Second Generation Offshore Liquefaction Projects

Dominique GADELLE

Deputy Vice-President Process and Technologies Division June 7th, 2012

Host

Kuala Lumpur

1. Introduction

- **2. Feedstock Preparation**
- **3. Offshore Liquefaction Processes**
- 4. End Flash and Nitrogen Removal
- 5. Conclusions

1. Introduction

- FLNG technology development opens up new possibilities to monetize profitably stranded gas fields or flared or re-injected gas
- In order to be competitive an offshore unit shall require
 - Compactness for plot
 - Controlled weight for hull
 - Increased safety , therefore reduction of all LPG inventories
 - Operability , flexibility with respect to sea motions
- New processes covering main units ready to reply to this challenges :
 - Feedstock preparation for liquefaction
 - Liquefaction
 - Nitrogen removal

2. Feedstock Preparation Requirements

- Prior to liquefying, feedstocks requires treatment in order to remove corrosive compounds and impurities that could freeze
- Acid gas : CO2 and H2S content below 50 ppm and 10 ppm respectively
- Sulphur coumpounds : lower than 30 ppm
- Water to be as low as possible (below 1 ppm)
- Mercury to be removed not to damage cryogenic heat exchangers
- Heavy Hydrocarbons and aromatics to be reduced below 1 ppm

2. Feedstock Preparation Requirements

- Acid gas can be removed via regenerable solvent absorption
- Water can be removed via mole sieves adsorption
- Mercury can be removed via solid bed adsorption.
- Heavy Hydrocarbon removal process selection shall be adapted to the plant specificities and objectives
- A new process has been developed for HHC removal to respond to offshore liquefaction challenges

2. Feedstock Preparation Processes Screening

2. Feedstock Preparation The New Process

C5+ 🖪

- Patent US 20106242536A1
- Offshore Dual Column Process

Technip

2. Feedstock Preparation Main Advantages

- Increased safety due to low liquid inventory
- Enhanced robustness by selecting S&T heat exchangers
- Turbo-expander provides all required refrigeration: smooth and fast start-up
- Recycled treated gas during start-up to minimise flaring : optimise investment return and limit environmental impact
- Optimised footprint: no fractionation unit required
- Liquefaction can be operated at high pressure to improve liquefaction efficiency
- This process is best adapted to offshore liquefaction processes not using mixed refrigerant

3. Offshore Liquefaction Processes State of the Art Technologies

Iechnip

IGU

KUALA LUMPUR

3. Offshore Liquefaction Processes Technip Tricycle Liquefaction Process

- Patent US 20100126214A1
- Tricycle Process

3. Offshore Liquefaction Processes The Tricycle Process : Advantages

- No liquid inventories increasing safety
 - Use of gas expansion cycles
- Efficiency approaches that of a liquid refrigerant cycle
 - Better efficiency than conventional Nitrogen Expansion Processes
- Three cycles totally independent
 - Easy operation and start-up
- Flexible
 - In term of layout and arrangement between equipment
 - In term of refrigerant composition

3. Offshore Liquefaction Processes The Tricycle Process : Flexibility

4. End Flash and Nitrogen Removal Why use an End Flash process ?

INTERNATIONAL GAS UNION UNION INTERNATIONAL GAS UNION UNION INTERNATIONAL GAS UNION

- Nitrogen removal
 - Commercial Nitrogen content in the LNG is 1% mol
- Produce End Flash Gas
 - Use of lean and clean gas for gas turbine instead of gas with heavy's
- Recover Helium
 - Recovery will increase the economics of the project

4. End Flash and Nitrogen Removal Open art N2 removal process

- Simple Flash Drum:
 - Efficient for Nitrogen levels up to 2% mol only
- Double Column Process:
 - Low energy consumption,
 - But efficient from 20% mol N2 content only
- Two Column Process:
 - More efficient than Double Column Process,
 - But more equipment
- Single Column Process:
 - Very low Methane content in the vent,
 - But power consuming

4. End Flash and Nitrogen Removal Technip Reboiled Scheme

Main Advantages

- Reduces the N2 content in LNG to very low value
- Takes benefit of the reboiler to sub-cool the LNG from the MCHE

4. End Flash and Nitrogen Removal Technip MLP Process

Main Advantages

- Takes advantage of the full installed power of the EFG Compressor with a small additional cost
- Allows the control of the Fuel Gas production

4. End Flash and Nitrogen Removal Technip Hi-Pur Process

Technip

"@

KUALA LUMPUR

VORLD GAS COM

IGU

4. End Flash and Nitrogen Removal Technip Hi-Pur Process : Main Advantages

- Maximize LNG production
- Methane content in the Nitrogen Vent is less than 0.1%mol
 - Impact on environment reduced
- Nitrogen (Liquid and Gas) production
 - Reduce size of utilities plant
- Helium production possible at low additional cost
 - More valuable process
- This process is particularly interesting for Floating LNG

5. Conclusions

25th world gas conference "Gas: Sustaining Future Global Growth"

Thank You

Dominique GADELLE, Tania SIMONETTI, Sylvain VOVARD

dgadelle@technip.com +33 14778 2243, svovard@technip.com +33 14778 5653

1

Host

Host Sponsor

