

25th world gas conference "Gas: Sustaining Future Global Growth"

PGCD: ENHANCE EFFICIENCY IN THE LNG VALUE CHAIN

PROGRAMME COMMITTEE CS 9.3

By: Rob Klein Nagelvoort, Shell Retiree

Date: Thursday 7th June

Venue: Kuala Lumpur

Host

ASSOCIATIO

Host Sponsor

Scope of the Study Group

 Review the efficiency along the value chain, signal trends and come up with ideas for further improvement.

- Definition of the LNG value chain: gas production, liquefaction, transport and regasification.
- Wide scope, which required to draw in expertise from many parties.

Members List

Mr. Rob Klein Nagelvoort	Shell Retiree, Chair
Mr. Arrigo Vienna	ENI G&P
Mr. Calogero Migliore	Repsol, Co-Chair
Mr. Dmitry Udalov	Gazprom
Mr. Heinz Bauer	Linde Group
Mr. Ibrahim Bawazir	Qatar Gas
Mr. Jacques Rottenberg	Elengy
Mr. Masanori Oki	Osaka Gas Co., Ltd.
Mr. Michael Winstanley	BP
Mr. Vaclav Chrz	Chart Europe
Mr. Wouter Pastoor	Flex LNG
Mr. Jeroen van Hooijdonk	Royal Dutch Shell, Secretary

*List of PGC D3 active members

List of Content

- Approach and Challenges
- Efficiency along the LNG Value Chain
- Gas Production
- LNG Production, onshore and offshore
- LNG Shipping
- LNG Terminals, onshore and offshore
- Small Scale LNG
- Conclusions

The Approach

- Pursue efficiency enhancement opportunities along the value chain
- New onshore and offshore technologies
- Emerging alternative value chains

The Challenges

- Meet profitability and public acceptability.
- More remote and hostile locations, high construction costs, higher gas production costs and lower LNG prices.
- Growing Domgas demand in producing countries

Typical efficiency ranges in the LNG chain *

	Liquefaction	Transport (**)	Regas	Overall
Thermal efficiency (%) ***	90 - 93	92 - 97	98 - 99	81 - 89
GHG emissions (kg CO ₂ eq./MWh) ****	20 - 28	8 - 23	3 - 6	32 - 55

(*) Excluding Gas production

(**) Considering a 138,000-m3 LNG tanker and 10 to 30-

day round trip

(***) Heating Value "Product Out / Feed In"

(****) kg CO2 emitted per MWh of product energy

CO₂ emissions produced by new power plants in the IEA GAS Scenario, 2020

Growing demand for LNG is leading to more gas sourced from difficult reservoirs, difficult locations

http://www.energyandcapital.com/articles/haynesville-natural-gas/695

Examples:

- Coal Bed Methane, Tight Gas
- Deep Sea, long transmission lines
- Tropical swamps, Arctic

Context:

- Development of required technology
- Higher development and production costs
- Complex logistics and facilities

- New plants use existing technologies (e.g. C3/MR, Optimised Cascade Process, DMR) in the range of 4.5-6 Mtpa
- For smaller capacities (1 3 mtpa) SMR and Gas Expansion processes are favoured
- High overall efficiencies can be achieved, either with industrial gasturbine drivers and maximum waste heat recovery, or via efficient aero-derivative gasturbines
- A strong drive towards higher efficiency is given by stricter emission regulations (i.e. max CO2/LNG limits in Australia, US)
- Floating LNG production is becoming reality

Reduced Specific CO₂ Emissions* from Fuel via Optimised Design

İGU

KUALA LUMPUR

* CO2/LNG balance has been made per train

MR Based Process

- The SMR process, with plate fins or spiral wounds, has a specific power of some 360 kWh/t, 10 % above world standard LNG.
- The N₂ expansion process has a specific power of some 560 kWh/t. Compact process for smaller scale, offshore operation.
- New processes with cascaded expansion cycles (N₂, C₁) have specific powers closer to SMR.

Comparison of processes on the same basis (feed gas quality, pressure, ambient temperature, equipment constraints etc.)

Enhancing efficiency in existing LNG Facilities

The need to improve efficiency in case of slack of gas supply or of lesser off-takes stimulated innovative solutions

Oman LNG

- Minimising Flaring Losses
- Optimising Production Planning
- Advanced Process Control (APC)

Nigeria LNG

- Turning off and balancing LNG trains
- Optimising power generation
- Optimising fractionation of NGL's

Offshore LNG production

Shell's Prelude FLNG

FLNG is increasingly considered a realistic opportunity for the monetisation of offshore resources

Höegh LNG FPSO solution

FLNG allows to efficiently develop difficult reservoirs by combining gas production and liquefaction

LNG shipping, trends and consequences

KUALA LUMPUR DINON INTERNATIONAL GAS UNION UNION INTERNATIONALE DU GAS

Engine Efficiency

Diesel engines have a 40% higher efficiency compared to steam turbines

- 1. Diesel re-liquefaction (DRL)
- 2. Dual Fuel Diesel Electric (DFDE).

Large Dielectric driven LNG carrier with dual fuel capability.

Larger Ship size

Efficiency Enhancement via Cold Utilisation – Integration at the Senboku terminal of Osaka Gas

Liquefied Carbon Dioxide

Floating Regasification Terminals - FSRU

Efficiency and Costs strongly depend on vaporisation system

Fuel consumption ranges from 0.5% (open loop vaporisation) to 2.5% of send out (closed loop vaporisation).

BUT Regulations/environmental impact limit application of open loop

- Lower cost, faster schedule and lesser environmental impact; new builds and converted carriers
- Operational in North and South America, Europe and the Middle East
- Main Players: Excelerate Energy, Golar LNG and Höegh LNG.

LNG as Transport Fuel

Applications

- Heavy-duty road transport
- Marine
 - offshore supply vessels
 - Inland waterway vessels
- Locomotives
- Mining trucks
- Stationary customers
 - local power stations
 - drilling rig power generators

Challenges

- Infrastructure Investments
- Safety and Sustainability
- Supportive Policy and Regulatory Environment
- Energy Efficiency

Conclusions

The LNG business has become booming again during the last three years

- LNG is a clear winner against coal for the "well to electron" efficiency.
- LNG can compete with pipeline gas in many cases
- Increasing use of LNG as replacement fuel for diesel and fuel oils.

Great technical advancements and improvements of efficiency across the value chain

- Gas production has become more complex
- Liquefaction and transport have become much more efficient
- Start of Floating LNG production
- Increase in re-gasification terminals many of them of the floating type.

Looking ahead

The IGU study groups in the next triennium will further deepen the main subjects of this efficiency report, viz. remote production/liquefaction, Life Cycle Analysis across the value chain and small scale LNG.