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Flaring associated gas is a big global problem 

Source: International Energy Annual 2005 World Bank GGFR 2006,2007 

Image courtesy of Chris Elvidge, National Geophysical Data Centre, Bouder, CO, USA 
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Why GTL? 

• Large spread between crude oil and natural gas princes 

 

• Converting crude 1 bbl  at 5.8 million btu: 

• Crude price @ $100/bbl corresponds to $17/million btu; 

• Current US gas price (Henry-rub) is $4/million btu; 

 

• Crude oil have a premium value ($13/million btu) over the gas since it is liquid 

Source: Toyo Engineering Corporation, 2011  
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Pre-Salt Province Formation 

• Huge oil and natural gas reserves; 

• Reservoirs located between 5,000 and 7,000 m 
under sea level; 

• Deep Water (more than 2,000 m); 

• Under Salt layer (may present more than 2,000 
depth). 

• Reservoir pre-salt formation when Latin 
American e African continents were separated; 
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Brazilian Pre-Salt Province in Numbers 

320 km 

Total area of the Province: 149,000 km2 
Area under concession: 41,772 km2 (28%) 
Area not under concession: 107.228 km2 (71%) 
Area with Petrobras interest: 35,739 km2 (24%) 

Light Oil 
High gas to oil ratio 
High CO2 Content 



11 

Pre-Salt Challenges 

• New Exploratory Frontier 

• Extended Well Tests (EWT) 

• Reducing technical and geological risks 

• 6 to 12 months duration 

• Powerful tool to character the reservoir 

• Reservoir Production along the time 

• Checking Damage mechanisms and reservoir 
hydraulic communications  

• Sampling rocks and fluids 

• Flow assurance  

• economic potential 

• Long Distances from the cost 

• Fields located in deep and ultra-deep water 

• No access to infrastructure for associated natural gas re-
injection or transportation during EWT  

• Avoid flaring the associated natural gas (legal and 
environmental constrains) 

• Processing natural gas with high CO2 contents 
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Modular GTL Demonstration Plant 
Aracaju/SE (CompactGTL Technology) 

• Dec/2010 – Final 
comissioning; 

• Jan/2011 – First syncrude;  

• Nov/2011 – Tests with high 
CO2 content and 
Technology Qualified; 

 

Source: CompactGTL Plc. 
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Modular GTL Demonstration Plant 
Fortaleza/CE (Velocys Technology) 

»  Under Qualification 

Source: Velocys, Zeus 2011 Modular GTL Seminar  
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Why Compact and Modular Reactors Use? 

• Limitation of space and weight  in an offshore 
production facility 

 

• Needing of intensified processes of mass and 
heat transfer 

 

• Production of natural gas falls along the time 

 

• Modules can be removed as production falls  

 

• Modules can go on-line and off-line to 
accommodate production variability (turndown 
flexibility) 
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Roadmap Toward Modular GTL Plant 
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Offshore GTL Process 
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Modular GTL Concepts 

Source: CompactGTL and SBM  

Source: MODEC, Toyo and Velocys 
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Main Reactions 

• Steam Methane Reforming 

 

  CH4 + H2O ↔ CO + 3H2      (Steam Methane Reforming)  

  CO + H2O ↔ CO2 + H2              (Water Gas Shift Reaction)  

 

CO2 content makes the “dry reforming” reaction compete with the SMR reaction.  

  CO2 + CH4 ↔ 2CO + 2H2          (Dry Reforming)  

 

 

• Fischer-Tropsch Synthesis 

 

  nCO + (2n+1)H2 ↔ H – (CH2)n – H + nH2O 
 

• Polymerization of H2 and CO into alkanes 

• Exothermic (ΔH–) 

• Requires efficient temperature control 
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Results – Steam Methane Reformer 

• The raise of CO2 in the natural gas 
feedstock leads to a reduction in the H2 / 
CO ratio due to RWGS reaction. 

CH4 + H2O ↔ CO + 3H2  (Steam Methane Reforming)  

CO + H2O ↔ CO2 + H2    (Water Gas Shift Reaction)  

H2 + CO2 ↔ CO + H2O (Reverse Water Gas Shift - RWGS) 

CO2 + CH4 ↔ 2CO + 2H2        (Dry Reforming)  

 

Prevent coking via: 

• Steam / carbon > 1.5 

• H2 / CO > 2.40 

H2/CO Ref                H2/CO Ref  
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Results – Steam Methane Reformer 

 Improving CH4 conversion and CO selectivity  

 Reduction of hydrocarbons content in the natural feed, 
as a consequence of the CO2 raise, does not reduce CO 
yield in the same magnitude 

 Partial conversion of the CO2 into CO (RWGS) 
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Results – Fischer-Tropsch 

• The CO conversion and methane selectivity are not 
highly affected by the CO2 

 

• Negative impact on the overall production due to 
lower CO yield in the SMR 

%CO2 (volume) Natural Gas Feed 
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Results – CO2 Balance 

• The FT section shows a neutral behavior 

• The SMR section is a CO2 consumer due to the RWGS reaction 

• The pre-reformer and catalytic combustion are CO2 producers 

• The overall process is a CO2 producer 

• Opportunity to optimize pre-reformer and SMR catalytical combustion 
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Results – Carbon Efficiency 

• Carbon Efficiency takes into consideration 
the rate of hydrocarbon in the feed 

 

• The raise of CO2 in the natural gas causes 
an increasing in the Carbon Efficiency due 
to the partial conversion of CO2 into CO via 
RWGS reaction  
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Conclusions 

• The GTL process can accommodate variable CO2 content in the natural gas 
feed stock (tested in demonstration plant up to 35% mol). It did not 
reduce the process efficiency 

 

• CO2 is consumed in the steam methane reactor to form CO as a 
consequence of an equilibrium change in the steam methane and water-
gas-shift reactions. Nevertheless, the GTL overall process cannot be 
considered a CO2 sequestration process, since the net CO2 process balance 
is positive 

 

• The results show that there are optimization opportunities to develop 
more efficient catalyst to improve the process in order to increase the 
overall carbon efficiency and reduce CO2 emission 

 

• Petrobras has been successful in the GTL modular small scale technologies 
qualification tests and studies for offshore use 
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Conclusions 

It is time to unlock the full potential of Natural Gas! 
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The Challenge is our Energy! 

Welcome to Rio ! 

OBRIGADO! 
TERIMA KASIH! 
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