

25th world gas conference "Gas: Sustaining Future Global Growth"

Offshore Gas-to-Liquids: modular solution for associated gas with variable CO₂ content

By: Fabio Passarelli, PETROBRAS GTL Consultant Date: 07/06/2012 Venue: Kuala Lumpur

Patron

1

Host

- 1) What is Gas-to-Liquid (GTL)?
- 2) Why Offshore GTL?
- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

1) What is Gas-to-Liquid (GTL)?

- 2) Why Offshore GTL?
- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

Gas-to-Liquids (GTL)

1) What is Gas-to-Liquid (GTL)?

2) Why Offshore GTL?

- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

Flaring associated gas is a big global problem

Image courtesy of Chris Elvidge, National Geophysical Data Centre, Bouder, CO, USA

KUALA LUMPUR

Gl

Why GTL?

- Large spread between crude oil and natural gas princes
- Converting crude 1 bbl at 5.8 million btu:
 - Crude price @ \$100/bbl corresponds to \$17/million btu;
 - Current US gas price (Henry-rub) is \$4/million btu;
- Crude oil have a premium value (\$13/million btu) over the gas since it is liquid

1) What is Gas-to-Liquid (GTL)?

2) Why Offshore GTL?

3) Brazilian Pre-Salt Province Formation

- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels

7) Conclusions

Pre-Salt Province Formation

• Reservoir pre-salt formation when Latin American e African continents were separated;

- Huge oil and natural gas reserves;
- Reservoirs located between 5,000 and 7,000 m under sea level;
- Deep Water (more than 2,000 m);
- Under Salt layer (may present more than 2,000 depth).

Brazilian Pre-Salt Province in Numbers

Pre-Salt Challenges

- New Exploratory Frontier
- Extended Well Tests (EWT)
 - Reducing technical and geological risks
 - 6 to 12 months duration
 - Powerful tool to character the reservoir
 - Reservoir Production along the time
 - Checking Damage mechanisms and reservoir hydraulic communications
 - Sampling rocks and fluids
 - Flow assurance
 - economic potential
- Long Distances from the cost
- Fields located in deep and ultra-deep water
- No access to infrastructure for associated natural gas reinjection or transportation during EWT
- Avoid flaring the associated natural gas (legal and environmental constrains)
- Processing natural gas with high CO₂ contents

- 1) What is Gas-to-Liquid (GTL)?
- 2) Why Offshore GTL?
- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

Modular GTL Demonstration Plant Aracaju/SE (CompactGTL Technology)

Source: CompactGTL Plc.

- Dec/2010 Final comissioning;
- Jan/2011 First syncrude;
- Nov/2011 Tests with high CO₂ content and Technology Qualified;

Modular GTL Demonstration Plant Fortaleza/CE (Velocys Technology)

Source: Velocys, Zeus 2011 Modular GTL Seminar

» Under Qualification

Why Compact and Modular Reactors Use?

- Limitation of space and weight in an offshore production facility
- Needing of intensified processes of mass and heat transfer
- Production of natural gas falls along the time
- Modules can be removed as production falls
- Modules can go on-line and off-line to accommodate production variability (turndown flexibility)

Roadmap Toward Modular GTL Plant

- 1) What is Gas-to-Liquid (GTL)?
- 2) Why Offshore GTL?
- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

Offshore GTL Process

Modular GTL Concepts

Source: CompactGTL and SBM

Source: MODEC, Toyo and Velocys

Main Reactions

• Steam Methane Reforming

 $CH_4 + H_2O \leftrightarrow CO + 3H_2$ (Steam Methane Reforming) $CO + H_2O \leftrightarrow CO_2 + H_2$ (Water Gas Shift Reaction)

 CO_2 content makes the "dry reforming" reaction compete with the SMR reaction. $CO_2 + CH_4 \leftrightarrow 2CO + 2H_2$ (Dry Reforming)

• Fischer-Tropsch Synthesis

 $nCO + (2n+1)H_2 \leftrightarrow H - (CH_2)n - H + nH_2O$

- Polymerization of H₂ and CO into alkanes
- Exothermic (ΔH–)
- Requires efficient temperature control

- 1) What is Gas-to-Liquid (GTL)?
- 2) Why Offshore GTL?
- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

Results – Steam Methane Reformer

 The raise of CO₂ in the natural gas feedstock leads to a reduction in the H₂ / CO ratio due to RWGS reaction.

Prevent coking via:

- Steam / carbon <u>></u> 1.5
- $H_2 / CO \ge 2.40$

 $\begin{array}{ll} \mathsf{CH}_4 + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CO} + 3\mathsf{H}_2 & (\text{Steam Methane Reforming}) \\ \mathsf{CO} + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CO}_2 + \mathsf{H}_2 & (\text{Water Gas Shift Reaction}) \\ \mathsf{H}_2 + \mathsf{CO}_2 \leftrightarrow \mathsf{CO} + \mathsf{H}_2\mathsf{O}(\text{Reverse Water Gas Shift - RWGS}) \\ \mathsf{CO}_2 + \mathsf{CH}_4 \leftrightarrow 2\mathsf{CO} + 2\mathsf{H}_2 & (\text{Dry Reforming}) \end{array}$

Results – Steam Methane Reformer


```
KUALA LUMPUR
```

- Improving CH₄ conversion and CO selectivity
- Reduction of hydrocarbons content in the natural fe as a consequence of the CO₂ raise, does not reduce yield in the same magnitude
- Partial conversion of the CO₂ into CO (RWGS)

Results – Fischer-Tropsch

15% CO2

%CO2 (volume) Natural Gas Feed

35% CO2

1,6% CO2

- The CO conversion and methane selectivity are not highly affected by the CO₂
- Negative impact on the overall production due to lower CO yield in the SMR

Results – CO₂ Balance

- The FT section shows a neutral behavior
- The SMR section is a CO₂ consumer due to the RWGS reaction
- The pre-reformer and catalytic combustion are CO₂ producers
- The overall process is a CO₂ producer
- Opportunity to optimize pre-reformer and SMR catalytical combustion

KUALA LUMPUR

Results – Carbon Efficiency

Global Carbon $E_c = \frac{m_{SYN} \cdot \Phi}{\sum_{j=HC.CO} (F_{j,PR} + F_{j,FUEL}) \cdot n_{Cj}} \cdot 100$

- Carbon Efficiency takes into consideration the rate of hydrocarbon in the feed
- The raise of CO₂ in the natural gas causes an increasing in the Carbon Efficiency due to the partial conversion of CO₂ into CO via RWGS reaction

- 1) What is Gas-to-Liquid (GTL)?
- 2) Why Offshore GTL?
- 3) Brazilian Pre-Salt Province Formation
- 4) Modular GTL Technologies and Principles
- 5) Offshore GTL Process
- 6) Results with variable CO₂ levels
- 7) Conclusions

Conclusions

- The GTL process can accommodate variable CO₂ content in the natural gas feed stock (tested in demonstration plant up to 35% mol). It did not reduce the process efficiency
- CO₂ is consumed in the steam methane reactor to form CO as a consequence of an equilibrium change in the steam methane and water-gas-shift reactions. Nevertheless, the GTL overall process cannot be considered a CO₂ sequestration process, since the net CO₂ process balance is positive
- The results show that there are optimization opportunities to develop more efficient catalyst to improve the process in order to increase the overall carbon efficiency and reduce CO₂ emission
- Petrobras has been successful in the GTL modular small scale technologies qualification tests and studies for offshore use

Conclusions

It is time to unlock the full potential of Natural Gas!

Authors

Ana Paula Fonseca

Antônio Bidart

Fabio Passarelli

Giovani Nunes

Roberto Carlos de Oliveira

30

The Challenge is our Energy!

