

25th world gas conference

"Gas: Sustaining Future Global Growth"

A Field Case of CO₂ Storage and EOR

By: Abel G. Lins Jr, PhD Senior Reservoir

Engineer

Date: June 07, 2012

Venue: Kuala Lumpur

Patron

Host

Host Sponsor

Summary

- Introduction
- Numerical Simulation of Field History
- Geological Storage and EOR CO2 Injection
- Geological Storage and EOR Flue Gas Injection
- Economical Analysis
- Conclusions

Introduction

Carbon dioxide (CO_2) emissions have become a major environmental concern due to their potential negative impact on the Earth's climate. It is hoped that the vast majority of CO_2 emissions from industry can be captured and gradually immobilised by various trapping mechanisms.

The CO₂ trapping mechanisms must be properly understood and modelled in order to optimize each particular application. A well selected, designed, and managed geological storage site can in theory retain CO₂ for millions of years

field case using compositional simulation of CO_2 injection for enhanced recovery is presented. The incremental oil and the amount of injected CO_2 stored in the reservoir are quantified and an economical analysis comparing CO_2 with Flue gas injection is performed.

Location

Numerical Model

	Grid	47x50x7
•	Dimensions (I,J)	70 m
•	Depth	1,100 m
•	Temperature	62 °C
•	Salinity	1,000 ppm
•	Porosity	25 %

Permeability 1,500 mD
 Oil Volume 2.927 MMm³

Gas Solubility Ratio
 20.2 stm³/m³

59 producing wells

Oil characterized with 5 components

Bottom Analytical Aquifer

Wells producing with total liquid rate specified

Production Extrapolation

Geological Storage and EOR – CO₂ Injection

Beginning of CO₂ Injection – 4 Injection Wells

Geological Storage and EOR – CO₂ Injection

Slab - Gas Saturation at the end of Injection

Total amount of CO₂ injection 1.17 x10⁹ m³

Workover in 32 wells

CO₂ Injection Schemes

5 M scm/d/w during 160 years 10 M scm/d/w during 80 years 25 M scm/d/w during 32 years 50 M scm/d/w during 16 years 100 M scm/d/w during 8 years 200 M scm/d/w during 4 years

Geological Storage and EOR - CO₂ Injection

Incremental Cumulative Oil Production

 $NP (10^3 \text{ m}^3)$

Geological Storage and EOR - CO₂ Injection

Incremental Cumulative Oil Production

NP (10³ m³) - Updated at 10% interest rate

Geological Storage and EOR - CO₂ Injection

Injection Rate scm/d/well	Injection Time years	Production Time of Incremental Oil years	Incremental NP 10 ³ scm	Incremental Recovery % OOIP	Discounted NP by 10%/year 10 ³ scm
5,000	160	56.87	135.38	4.63	51.83
10,000	80	26.76	105.76	3.61	53.31
25,000	32	10.67	75.85	2.59	54.87
50,000	16	6.16	53.22	1.82	42.04
100,000	8	4.25	40.83	1.39	34.71
200,000	4	4.08	44.30	1.51	38.72

• Injection of 25 x 10³ m³/d/w of CO₂ during 32 years in a reservoir with 45% of recovery at abandonment.

- Production during almost 11 years
- Incremental recovery 75.85 Mm³,
 corresponding to 2.6 % OOIP
- CO_2 injected = 1.1688 x 10^9 m³
- CO_2 produced = 0.045 x 10^9 m³
- CO_2 accum. = 1.1238 x 10^9 m³

CO₂ Trapped

56.21 % Structural

32.50 % Residual gas

11.29 % Solubility

Geological Storage and EOR – Flue Gas Injection

Incremental Cumulative Oil Production Due to Flue Gas Injection

 $NP (10^3 \text{ m}^3)$

NP (10^3 m^3) - Updated at 10% interest rate

Economic Analysis

- Economic Analysis considers injection of 25,000 std m³/day/injection well
- In all the scenarios the power plant is operated with natural gas in a location less than 100 kilometers from the injection site
- Capture and transportation process of CO₂ can be used for more than one storage site, hence, the cost are calculated per tonne of CO₂.

Cost in US\$ for Optimistic, Moderate and Pessimistic Scenarios.

	CO2			Flue Gas		
Scenarios	Optimistic	Moderate	Pessimistic	Optimistic	Moderate	Pessimistic
Cost per ton captured	15.00	38.00	60.00	6.00	7.00	8.00
Cost per ton transported	1.00	4.00	8.00	1.00	4.00	8.00
Total cost per day ready for injection	2876.64	7551.18	12,225.72	1258.53	1977.69	2876.64

 CO_2

		CO ₂ Injection Co	st	VA/ o ul conson	Incomo (Oil	
SCENARIOS	per Day total after 32 years		Present Value at 10%/year	Workover Investment	Income (Oil Price - Cost)	Net Cash Flow
	US\$	10 ³ US\$	10 ³ US\$	10 ³ US\$	10 ³ US\$	10 ³ US\$
Optimistic	2,876.64	33,599.16	10,493.25	2,520.00	20,700.94	7,687.69
Moderate	7,551.18	88,197.78	27,544.79	2,520.00	20,707.94	-9,356.85
Pessimistic	12,225.72	142,796.41	44,596.32	2,520.00	20,707.94	-26,408.38

Flue Gas

		CO ₂ Injection Co	st	Workover	Income (Oil	
SCENARIOS	ner I)av I		Present Value at 10%/year	Investment	Price - Cost)	Net Cash Flow
	US\$	10 ³ US\$	10 ³ US\$	10 ³ US\$	10 ³ US\$	10 ³ US\$
Optimistic	1,258.53	14,699.63	4,590.80	2,520.00	11,831.00	4,720.20
Moderate	1,977.69	23,099.42	7,214.11	2,520.00	11,831.00	2,096.89
Pessimistic	2,876.64	33,599.16	10,493.25	2,520.00	11,831.00	-1,182.25

Conclusions

- 1. CO_2 storage in abandoned oil fields has been analyzed along with Enhanced Oil Recovery (EOR) methods with CO_2 . An economic analysis of incremental oil produced with CO_2 injection and flue gas injection into abandoned petroleum reservoirs has also been performed, showing that both the injection of pure CO_2 and the injection of flue gas lead to incremental oil recovery due to oil swelling and reduced liquid viscosity, but while CO_2 injection provides more efficient displacement and capture benefits, flue gas injection may be preferred due to its lower economic cost.
- 2. CO₂ Injection at a rate of 100,000 scm/d for 32 years, provides 75,850 m³ of incremental oil representing an increment of 2.59% extra-recovery of oil obtained by EOR and a CO₂ storage volume of 1.162x10⁹ m³ remaining in the reservoir, corresponding to 2.09 Mt. From this storage amount: 56.21 % is structurally trapped, 32.50 % is residual gas trapped and 11.29 % is solubility trapped.

Conclusions

- 3. By comparison, considering a flue gas injection rate of 100,000 scm/d for 32 years, results in 36,740 m³ of incremental oil representing an increment of 1.26% extra-recovery of oil obtained by EOR and a CO₂ storage volume of 9.29x10⁷ m³ remaining in the reservoir, corresponding to 0.167 Mt. From this storage amount: 83.30 % is structurally trapped, 0.14 % is residual gas trapped and 16.56 % is solubility trapped.
- 4. For the particular case presented, except for the optimistic scenario, the flue gas storage presented a better net cash flow than CO₂ storage and EOR due to the capture plant cost necessary to separate the CO₂.

THANK YOU