

25th world gas conference "Gas: Sustaining Future Global Growth"

Setting Up Electronic Data Bases Of Global CO₂ Sequestration Projects

By: S. Khan, Deputy Chief of Department of transportation, using and storage of natural gas, Chief of UGS Office, Gazprom JSC

V. Khvostova, leading scientific officer, Gazprom VNIIGAZ Ltd

Date: 7 June 2012

Venue: EF6.B: PGCA/EF2.A: WOC2

CO2 Capture, Transport And Sequestration

Patron

Host

Host Sponsor

- The application of innovative pure technologies in the power industry will reduce carbon dioxide emissions.
- Despite serious disputes about the impact of carbon dioxide on environmental temperature change, global projects are developed and implemented, which is primarily caused by the improvement of the environment condition.
- Setting up long-term underground carbon dioxide storages is considered and realized as one of promising and widely developing areas.
- The technology of carbon dioxide capture and sequestration will contribute to the changes of energy policy and reduction of the negative impact of man-caused emissions on the environment.

- All international efforts were united and as a result several dozens of projects have been developed and successfully implemented for over 15 years.
- In July 2009 the G8 Summit identified and set criteria for launching 20 CO₂ projects.
- In 2009 the Climate doctrine was adopted in Russia.
 It was followed by the Comprehensive Plan of Implementation of the Climate Doctrine of the Russian Federation to 2020, which was approved in April 2011.

- The analysis of global projects on CO₂ capture and sequestration will allow to unite them into a database that can be modified and adjusted depending on the project development.
- Works performed in this area and project implementation will in future result in the development of legislative documents regulating emission reduction for a specific region or area using new technologies of industrious gaseous emissions capture and treatment, selection of geological sites for carbon dioxide injection for the purpose of longterm and safe storage.
- It will be an essential document for such major CO₂ organizations as IEA, CSLF and Global CCS Institute.

For the last two years from 2009 to 2011 the number of CO_2 projects has increased on 68 projects. Today the total number of CO_2 projects amounts to 328. They comprise:

- 259 active or planned projects
- 23 projects CO₂ capture facilities have been constructed
- 15 cancelled and suspended projects 2007
- 31 completed projects.

The breakdown of planned and launched global CO₂ capture and sequestration projects by years

NUTERIATIONAL GAS UNION DISCHINGTONICE BUI GAS

Distribution of carbon capture and storage projects by CO₂ emission source

KUALA LUMPUR

GU

CAZPROM Distribution of CO₂ emission sources by types of storage

KUALA LUMPUR

GU

GAZPROM Structure of CO₂ projects distribution

Storage type Capture type	Not deter- mined	ECMR	EOR	EGR	Depleted oil / gas field	Sandstone / carbonate formation / aquifer	Basalt / other
PP-coal post- combustion					Cance- led pro- jects		
PP-gas post- combustion			Implemen- ted projects				
PP-IGCC pre- combustion		CO ₂ capture plant is constructed		Planned and de- signed projects		Programs and com- mercial pro- jects	
PP-Oxy-fuel	Temporary suspended projects						
Industry sector							Comple- ted pro- jects
Oil/gas pro- cessing plants	Completed		Implemen- ted projects				
natural fields	projects						

Global carbon dioxide capture ZPROM and storage projects

Storage type Capture type Power plant- Coal post- combustion capture	Storage type is not determined CHP 480 MW 2,9 Mt/year Siekierki (Vattenfall) Poland, 2016	Coal methane pro- duction increase CHP 1200 MW from 2,8 to 5 Mt/year Cockenzie (Scot. Power, Alstom) UK, 2012-2014	Oil recovery improvement 2 CHP 600 MW 3 - 4 Mt/year Harbin power plant-Daqing Oil Field Project и RITE (CNPC, Toyota) China, 2009	Gas recovery im- provement CHP 250 MW 1,8 Mt/year Janschwalde (Vattenfall) Germany, 2015	Depleted oil / gas field CHP 400 MW 0,008 Mt/year Esbjerg Power Sta- tion-CASTOR (EL- SAM-Elsam Power) Denmark, 2008	Sandstone / carbon- ate formation / aqui- fer CHP 50 MW (total 419 MW) 0,003 Mt to sandstone + 0,01 Mt to carbonate formation Appalachian Basin- ECO2 R.E. Burger Plant (MRCSP, Bat- telle Memorial Insti- tute, First Energy, Powerspan) USA, 2007-2009 (2 phase of MRCSP)	Basalt / other CHP 320 MW 0,073 Mt/year AES Shady point (AES Corporation) and application for freezing and cool- ing products, for food and drinks production USA, 1991
Power plant- Gas post- combustion capture	CHP 870-1500 MW 0,01 Mt/year with increase to 2 Mt/year Enecogen in Rotter- dam (ENECO, Dong Energy) Netherlands, 2009- 2011	CHP 100 MW 0,1 Mt/year Fairview ZeroCarbon Project (C02CRC , CSIRO) Australia, 2009	CHP 860 MW 2,5 Mt/year Halten CO2 Project Draugen- Heidrun/Tjeldbergodden (Shell, Statoil) Norway, 2011			CHP 100-400 MW 0,56 Mt/year Hammerfest (Hamm. Energy, Sargas, Siemens) Norway, 2013	
Power plant- IGCC coal pre- combustion capture	CHP 253 MW 0,3 Mt/year Willem-Alexander Power Plant/Nuon Power Bluggenum (Nuon, Vattenfall) Netherlands, 2010	CHP 300 MW 2 Mt/year Swan Hills ISCG/Sagitawah power project (Swan Hills Synfuels) Canada, 2015	CHP 500 MW 4-5 Mt/year BP Carson DF2 (Hydrogen Energy) USA, 2012		CHP 750 MW 1 Mt/year Dongguan Taiyang- zhou IGCC plant (Dongguan Tai- yangzhou Power Corporation, Xinx- ing Group, Nanjing Harbin Turbine Co Ltd.) China, 2015	CHP 600 MW 90% CO2 capture Southern California Edison IGCC Project (Southern California Edison) USA, 2008	CHP 914MW 65% of CO2 emis- sion Wallula (Wallula Resource Recov- ery LLC and Edi- son Mission Group), basalt USA, 2013
Power plant- Oxy-fuel	CHP 50-70 MW volume n/a ZENG Risavika (ZENG AS, Shell Technology Nor- way, Statoil, Nor- wegian government funding agency) Norway, year n/a.	CHP 50-200-1200 MW 0,6-2,5-7,5 Mt/year SEQ Ijmond/Zero Emission Power Plant ZEPP (SEQ Neder- land B.V., ENECO, TU Delft) Netherlands, 2009	CHP 300 MW 3 Mt/year SaskPower Clean Coal Shand power station (SaskPower) Canada, 2012		CHP 30 MW 3 Mt/year (total vol- ume 87 Mt) Coolimba (Aviva Corp.) Australia, 2009	CHP 300 MW 2,75 Mt/year OXI-CFB300 - Compostilla El Bierzo/Ciuden CCS Facility (EDP , Endesa) Spain, 2010 (injection in 2015)	
Industry sector (plants, fac- tors)	Steel works 0,00073 Mt/year (to 1 Mt/year) POSCO CO2 (Po- hang Iron and Steel Co.) Korea, 2010-2011	Ethanol production plant total 0,01 Mt CSEMP-Red Deer Area-Ardley Coal (Suncor Energy, Al- berta Research Council) Canada, 2005-2006 (further - monitoring)	Mineral fertilizers produc- tion plant and other chemi- cal plants 0,135 Mt/year Petrobras-Buracica field (Petrobras) Brazil, 1987	Oil refinery 0,35 Mt/year Danube refin- ery/Ulles EGR (MOL) Hungary, year n/a	Steel works 6 Mt/year Redcar, Scunthorpe, Port Talbot (CORUS) Uk, year n/a.	Synthetic fuel palnt 15 Mt/year Monash CTL (Mon- arsh Energy, Shell, Anglo Coal Austra- lia) Australia, 2016	Mineral fertilizers production plant 0,06 Mt/year (re- turned to the proc- ess) Petronas fertilizer plant Kedah (MHI Petronas fertilizer) Malaysia, 1999
	CO ₂ capture plant is constructed		Planned and designed pro- jects		Implemented pro- jects Programs and commer-		Completed projects
	Canceled projects		Temporary suspended projects		cial projects		

Storage type CO ₂ source	Coal methane produc- tion increase	Oil recovery in- crease	Gas recovery in- crease	Depleted oil / gas field	Sandstone / carbonate formation / aquifer	Basalt / other
Oil/gas and gas processing plants	Total 870 t JCOAL Yubari/Ishikari (KANSO, MHI) Japan, 2002-2007	Total 3 884 Mt Budafa and Lovászi field (MOL) Hungary, 1972- 1996	0,02 - 0,5 Mt/year K12-B CRUST (GDF SUEZ Neth- erland) Netherlands, 2004	Boiler 30 MW 0,075 Mt/year (total 0,15 Mt - 2 years) Lacq (Total, Air Liquide, IFP, BRGM, Alstom) France, 2009	3 Mt/year (together with LNG plant) Bintulu CCS Project (MHI, JGC Petronas) Malaysia, 2011	
Other /CO2 natural field	Total 0,001 Mt Black Warrior Basin (SECARB) USA, 2009	0,14 Mt/year Paradox Basin- Aneth oil field test (SWP) USA, 2007	Total 30 Mt Budafa Szinfeletti Field (MOL , ERDGAS, Kohle) Hungary, 1985- 1996	0,065 Mt Otway Stage 1 (CO2CRC) Australia, 2008-2009 (monitor- ing in progress)	0,45 Mt/year TOUAT/Hassi Ilatou (GDF Suez, Sonatrach) Algeria, 2013	SUGAR project (IFM- GEOMAR, BMWi, GFZ Helmholtz-Zentrum Pots- dam, BASF, Linde, Winter- shall, RWE, EON Ruhrgas AG, Marum) storage in gas hydrates Germany, 2008-2011, 1 phase
Commercial projects and programs	Commercial project volume n/a. CO2-ECBM (Asia Pa- cific Partnership: CSIRO-JCOAL) Australia-Japan-China, 2011			0,2 Mt/year PICOREF (Gaz de France , Air Liquide, Alstom, Total μ др .) France, 2005 (studies with further CO2 injection in 2015)	Commercial projects (38 plants, different industrial sources of CO2) 0,4 - 4 Mt/year Alberta Saline Aquifer Pro- ject (ASAP) (EPCOR, En- bridge) Canada, 2010-2015	
		CO ₂ capture plant is constructed Cancelled pro- jects Completed pro- jects		Planned and designed projects Temporarily suspended projects		Implemented projects Programs and commercial pro- jects

IGU

KUALA LUMPUR

- country, location;
- key companies;
- project cost;
- emission source;
- CHP or plant capacity;
- initial feedstock;
- capture type;
- capture technology.

General information on the transport and storage:

- transmission to the injection location;
- distance from the source to the injection location;
- storage type;
- type, concentration and volume of injected gas or gas mixture;
- date of project launch and completion;
- project status;
- project type

Geological and hydro-geological information of formation storage:

- temperature, pressure;
- formation depth, thickness (general and effective);
- formation lithology and mineralogy;
- porosity, permeability (minimum, maximum, average);
- cap lithology and thickness;
- CO₂ capture mechanism in formation;
- type of formation water;
- density, mineralization, saturation and pH of formation water;
- monitoring types.

		General information												
Project name	Country	Location	Company-organizer	Project cost, US \$	Date of pro- ject launch	Date of project completion	Project type	Project status						
Appalachian Ba- sin-R.E. Burger Plant 1	USA	Ohio, Shadyside	MRCSP Battelle Memorial Insti- tute First Energy Powerspan	27 490 564,00	2007	2009	Carbon diox- ide capture and seques- tration	Pilot						
Large-volume Sequestration Test- Decatur/ADM Ethanol Facility	USA	Illinois, Decatur	MGSC Archer Daniels Mid- land Company	612 000 000,00	2012									
Lacq	France	Lacq	Total Air Liquide IFP BRGM Alstom	73 834 200,00	2009	2011	Carbon diox- ide capture and seques- tration							
Karsto	Norway	Rogaland, Karsto	Naturkraft	243 813 000,00	2009									
Zama Link	Canada	Alberta, Zama	PCOR Partership	26 059 889,00	2006									
CO2STORE As- næs power sta- tion-Kalundborg	Denmark	Kalundborg	Dong Energy		2016									
Altmark	Germany	Salzwedel	Gaz de France Erdgas Erdol		2008									

	General information on CO₂ capture facility and transport											
Project name	CO ₂ source	Min. ca- pacity of CHP, MW	Max. capacity of CHP, MW	Fuel type	Capture type	Capture tech- nology	Transmission	Distance from the CO ₂ source to injection loca- tion, km	Storage type	Injected gas	Volume of inject- ed gas, Mt/year	Total vol- ume of in- jected gas, Mt
Appalachian Basin-R.E. Burger Plant 1	СНР	50	419	coal	Post- combustion	Absorption treatment – water solution of ammonium carbonate	Tank trunk	0,7	Sequestration	CO ₂	0,003	
Large- volume Se- questration Test- Deca- tur/ADM Ethanol Fa- cility	Ethanol pro- duction plant						Pipeline		Sequestration	CO2	1,1	
Lacq	Gas pro- cessing plant Boiler		30	gas	Oxy-fuel		Pipeline	27	Sequestration in Rouss depleted gas field	CO ₂ O2 Ar N2	0,075	0,15
Karsto	СНР	420		gas	Post- combustion	Absorption treatment – mono- ethanolamine	Pipeline	250	Sequestration	CO ₂	1,2	
Zama Link	Enhanced CO ₂ and H ₂ S content in hydrocarbons Gas pro- cessing plant						Pipeline	170	Oil recovery in- crease	CO ₂ H ₂ S	0,067	
CO2STORE Asnæs pow- er station- Kalundborg	CHP		600		Post- combustion				Sequestration		3,4	
Altmark	СНР	30		coal	Oxy-fuel		Tank trunk	350	Gas recovery increase of Altmark gas field	CO ₂ N ₂ CH ₄	0,01	0,1

KUALA LUMPUR 2012 WORD INTERNATIONAL BAS UNION DUMONI INTERNATIONAL BAS UNION DUMONI INTERNATIONAL BUIGAZ

	Geological, hydro-geological properties of storage													
Project name	Reservoir for CO ₂ storage	Formation lithology	Depth, m	Total thickness, m	Net pay, m	Min. and max. porosity (aver), %	Min. and max. per- meability (aver), mD	Formation cap litholo- gy	Formation cap thick- ness, m	Capture mechanism	Formation water mineralization, mg/l/type of for- mation water	T,C	P, MPa	Monitoring methods
Appalachian Ba- sin-R.E. Burger Plant 1	Appalachian basin Oriskany formation Tuscarora/Clinton	Sandstone	1798 2500	762 64	46 28	3 – 20 (10) 3 – 11 (5)	2,2 - 60 (27) 0,2 - 40 (3)	Clay shales of Middle Devonian Marcellus formation and lime- stone of Onondaga formation	152		250 000	80		Cross-well shear seismic survey, well microseismic survey, tracer monitoring (PFC tracer), logging dia- gram with wireline equipment, liquid satu- ration profile identifica- tion analysis of for-
Large-volume Sequestration Test-	Salinized Mount Simon Sandstone	Sandstone	2100	> 200	30 - 60	8 – 18 (13,4)	(234)	stone of Antes, Utica, Rose Hill formations Crystalline dolomites, sandstone dolomites, argillites, clay shales,			Chloride -natrium	35 - 50	16 - 20	mation water, P-T monitoring 2D and 3D seismic monitoring Temperature and
Decatur/ADM Ethanol Facility Lacq	formation	Fractured						mudded sandstone of Eau Claire formation					3 (initial	pressure monitoring Water monitoring CO2 injection monitor- ing Microsoismic monitor-
Karsto	formation	dolomite	4500	121	70	3 – 20 (6)	0,1 (1)	marl	2000	Hvdrody-		150	48)	ing of formation and cap Gas leak monitoring
	Salinized Utsira aquifer	Sandstone	800-940	300		27 – 42	2000	Shale, silty grey clay Shale Drape	50 - 100	namic and carboniza- tion of for- mation min- erals	Chloride-natrium			
Zama Link	Salinized Keg River pinnacle reef aquifer Cardium formation	Dolomites	1500	343	120	(10)	10 - 1000	Muskeg/Prairie anhy- drites	70			71	15	Geochemical pressure monitoring, tracer monitoring, isotope and ion chemistry monitoring
CO2STORE Asnæs power station- Kalundborg	Danish basin, Havnso structure, Gassum formation	Sandstone	1460	150	100	36 (25)	2000 (500)	Argillites of Fjerritslev formation	500	Stratigraph- ic		50	15	
Altmark	Salzwedel- Peckensen deplet- ed gas formation	Sandstone	3150 - 3700	226		4 – 28 (8)	10 – 100 (30)	Halite of Zechstein formation	> 300		357 000/calcium- magnesium	120	20	

IGU

INTERNATIONAL GAS

KUALA LUMPUR

VORLD GAS COM

- Several countries have started to assess and document (develop a regulatory base) potential and efficient locations for CO₂ sequestration.
- The analytical material gathered and systematized for all global CO₂ projects can be the basis for rational and efficient selection of potential locations for CO₂ long-term storages and implementation of promising, advanced and safe technologies.
- Gazprom JSC and Gazprom VNIIGAZ Ltd also take part in a number of initiatives aimed at studying the technology of CO₂ capture and sequestration, which will allow Russia to take part in international projects on capture and long-term storage of gaseous industrial emissions.

THANK YOU