

25th world gas conference

"Gas: Sustaining Future Global Growth"

Experience of Designing Natural Gas Transmission Pipelines in Super Challenging Geological and Environmental Conditions of Eastern Siberia and the Far East

By: <u>Svetlana Dzyuba</u>, Anatoly Chepkasov (OAO Gazprom); Sergey Savchenkov (OAO Giprogaztsentr)

Date: 05 June 2012

Venue: WOC-3

Patron

Hos

Host Sponsor

Basic Characteristics of Sakhalin - Khabarovsk

Basic technical characteristics:

Route length -1,836.7 km - incl. the first start-up complex -1,227.6 km Branch length to Vladivostok -116 km Operating pressure -9.8 MPa Gas pipeline diameter - 1,220 mm

- at crossing via Nevelsky Strait -1,020 mm (2 lines) Number of CS/capacity -14/1,136 unit/MW

The first start-up complex of the gas pipeline was put into operation in September 2011

Geological and Environmental Conditions along Sakhalin - Khabarovsk - Vladivostok **Gas Transmission Pipeline Route**

- High seismotectonic activity;
- Considerable hydrographic and ravine/draw relief dismemberment;
- Significant swampiness;
- Abundant floods in the area;
- Complexity and high variability of geologic and lithologic structures;
- · Plots with close bedding of rocks and metamorphic formations;
- High activity of erosion and suffosion processes and gullying;

 Significant dynamics of lateral and vertical erosions of river valleys.

Pipeline length in areas with high seismic activity

Overall tectonic faults including areas with:

- High activity
- Medium activity
- Low activity

112 km

56

16

25 15

Engineering Design of Gas Pipeline Laying in Areas with Seismic Activity of 8-9 Degrees on MSK-64 Scale

- Dedicated mechanical characteristics of pipe material and its nominal sizes, taking into consideration soil deformation and type of soil mechanical displacement;
- Gas pipeline horizontal and vertical turns by elastic bending with the radius of 1,500DN (minimum);
- Special configuration of trenches at tectonic fault crossings and at 100 m (both directions) from them;

Limitation of a gas pipeline laying depth;

- Trench filling and back filling with loose soil (coarse-grained sand, fine gravel);
- Fiber-optic system of continuous geotechnical monitoring;
- Gas pipeline design and construction in areas with tectonic faults implemented under the Special Technical Specifications approved in due order.

Computation of Gas Pipeline on Endurance Capability and Stability

- Computation of the endurance capability, deformation characteristics and axial stability under the normal operational conditions;
- Computation of the endurance capability and axial stability under soil deformations during the tensile-and-compression axial seismic wave;
- Computation of the endurance capability and stability under the effect of transcurrent fault wall
 movements subject to a type of mechanical displacement and anticipated magnitude of irreversible
 soil displacement.

Engineering Design of Compressor Stations in Areas with Seismic Activity of 8-9 Degrees on MSK-64 Scale

Technical Status Monitoring System of Sakhalin – Khabarovsk – Vladivostok Gas Transmission Pipeline (1)

Technical Status Monitoring System of Sakhalin – Khabarovsk – Vladivostok Gas Transmission Pipeline (2)

Seismic Monitoring Subsystem using seismic monitoring posts (SMP)

Geodynamic Monitoring Subsystem

Geotechnical Monitoring Subsystem using fiber-optic sensors and "smart inserts" (SI)

Technical Status Monitoring System of Sakhalin – Khabarovsk – Vladivostok Gas Transmission Pipeline (3)

A Snapshot of Operator's Console Image (version)

Implemented Eastern Projects of OAO Gazprom

Prospective Eastern Projects of OAO Gazprom

BASIC CONFIGURATION OF UNIFIED GAS SUPPLY SYSTEM OF RUSSIA IN EASTERN SIBERIA AND THE FAR EAST

Thank You for

Your Attention!