

25th world gas conference "Gas: Sustaining Future Global Growth"

Combined Heat and Power (CHP)

COGENERATION at PETRONAS' Gas Processing Plant

By: Fairos Roslan, Head of Business Development, PGB

Date: 5 June 2012

Venue: Room 403/404, KL Convention Center

To share a case study example of Combined Heat and Power (CHP) on PETRONAS Gas Berhad (PGB)'s Cogeneration Plant installation project at Gas Processing Plant (GPP) A and B Complex, in Terengganu, Malaysia

• INTRODUCTION TO PETRONAS GAS BERHAD (PGB)

• BACKGROUND

• Current process operation and utilities at GPP A and GPP B

• PGB'S PROPOSAL FOR COGENERATION SYSTEM

• Process operation and utilities with cogeneration system

• JUSTIFICATION FOR COGENERATION SYSTEM

- Improved reliability of sales gas supply to the country
- Sales gas saving to the country
- Energy efficiency
- Attractive economics
- CONCLUSION

Corporate Profile of PETRONAS GAS BERHAD (PGB)

- Private Limited Company
 23 May 1983
- Public Limited Company
 28 March 1995

• PETRONAS owns 60.63% equity

Business Division of PETRONAS GAS BERHAD (PGB)

IGU

PETRONAS GAS BERHAD (PGB) plays a major role in adding value to Natural Gas

IGU

- INTRODUCTION TO PETRONAS GAS BERHAD (PGB)
- BACKGROUND
 - Current process operation and utilities at GPP A and GPP B
- PGB'S PROPOSAL FOR COGENERATION SYSTEM
 - Process operation and utilities with cogeneration system

• JUSTIFICATION FOR COGENERATION SYSTEM

- Improved reliability of sales gas supply to the country
- Sales gas saving to the country
- Energy efficiency
- Attractive economics
- CONCLUSION

Current Process Operation and Utilities setup at the Gas Processing Plant (GPP)-A

IGU

Current Process Operation and Utilities setup at the Gas Processing Plant (GPP)-B

IGU

Summary of GPP utilities

UTILITY	SUPPLY CONDITION	DESCRIPTION	CURRENT DEMAND		
	GPP A				
_	11 kV	Maximum Demand	21,000 kW		
Electricity		Annual Electricity Consumption	178 million kWh		
		Total HP Steam Demand	279 T/hr		
HP Steam	Pressure: 39.5 bar (abs) Temperature: 390 DegC	Steam generation from Fired Boilers	78 T/hr		
		Steam generation from Waste Heat Boilers	201 T/hr		
Fuel Gas	Pressure: 4.5 barg	Total Consumption	36.6 mmscfd		
		Consumption at gas turbines, furnace and other users	27.22 mmscfd		
		Consumption at steam system	Supp. Firing at HRSG: 4.23 mmscfd Fired boiler: 5.15 mmscfd		
		GPP B			
et a state		Maximum Demand	22,000 kW		
Electricity	132 kV / 33 kV/ 6.6kV	Annual Electricity Consumption	186 million kWh		
HP Steam	Pressure: 44 bar (abs) Temperature: 410 DegC	Total HP Steam Demand	173 T/hr		
		Steam generation from Fired Boilers	63 T/hr		
		Steam generation from Waste Heat Boilers	110 T/hr		
Fuel Gas	Pressure: 1 5 harg	Total Consumption	31.5 mmscfd		
	Temperature: 28 degC	Consumption at gas turbines, furnace and other users	27.09 mmscfd		
		Consumption at steam system	Fired boiler: 4.41 mmscd		

- INTRODUCTION TO PETRONAS GAS BERHAD (PGB)
- BACKGROUND
 - Current process operation and utilities at GPP A and GPP B
- PGB'S PROPOSAL FOR COGENERATION SYSTEM
 - Process operation and utilities with cogeneration system

• JUSTIFICATION FOR COGENERATION SYSTEM

- Improved reliability of sales gas supply to the country
- Sales gas saving to the country
- Energy efficiency
- Attractive economics
- CONCLUSION

Summary of GPP utilities after installation of Cogeneration plant

UTILITY	SUPPLY CONDITION	DESCRIPTION	WITHOUT COGENERATION	WITH COGENERATION
		•	GPP A	
Electricity	11 kV	Maximum Demand	21,000 kW	21,000 kW
		Annual Electricity Consumption	178 million kWh	178 million kWh
HP Steam	Pressure: 39.5	Total HP Steam Demand	279 T/hr	279 T/hr
	bar (abs) Temperature: 390 DegC	Steam generation from Fired Boilers	78 T/hr	40 T/hr
		Steam generation from Waste Heat Boilers	201 T/hr	200 T/hr
Fuel Gas	Pressure: 4.5 barg Temperature: 28 degC	Total Consumption	36.6 mmscfd	39.75 mmscfd
		Consumption at gas turbines, furnace and other users	27.22 mmscfd	27.22 mmscfd
		Consumption at steam system	Supp. Firing at HRSG: 4.23 mmscfd Fired boiler: 5.15 mmscfd	Supp. Firing at HRSG: 4.23 mmscfd Fired boiler: 2.64 mmscfd
		COGEN	-nil-	5.66 mmscfd
			GPP B	
Electricity .	CC LV	Maximum Demand	22,000 kW	22,000 kW
Electricity	66 KV	Annual Electricity Consumption	186 million kWh	186 million kWh
	Pressure: 39.5	Total HP Steam Demand	173 T/hr	173 T/hr
HP Steam	bar (abs) Temperature: 390 DegC	Steam generation from Fired Boilers	63 T/hr	0 T/hr
		Steam generation from Waste Heat Boilers	110 T/hr	110 T/hr
Fuel Gas	Pressure: 4.5 barg Temperature: 28 degC	Total Consumption	31.5 mmscfd	33.31 mmscfd
		Consumption at gas turbines, furnace and other users	27.09 mmscfd	27.09 mmscfd
		Consumption at steam system	Fired boiler: 4.41 mmscd	Fired boiler: 0 mmscd
		COGEN	-nil-	6.15 mmscfd

- INTRODUCTION TO PETRONAS GAS BERHAD (PGB)
- BACKGROUND
 - Current process operation and utilities at GPP A and GPP B
- PGB'S PROPOSAL FOR COGENERATION SYSTEM
 - Process operation and utilities with cogeneration system
- JUSTIFICATION FOR COGENERATION SYSTEM
 - Improved reliability of sales gas supply to the country
 - Sales gas saving to the country
 - Energy efficiency
 - Attractive economics
- CONCLUSION

⁽³⁾ Calculated based on GPP

⁽⁴⁾ High reliability of power supply to GPP due to parallel operation with TNB. Cogen reliability is at 97.6% as per PGB project proposal

Sales Gas savings to the country is 3.93 mmscfd

Fuel requirement

Total savings to the country: 3.93 mmscfd 3.93 mmscfd = 19 MW electricity can be generated 3.93 mmscfd = RM 59.5 million/year @ Gas price = RM 38.00/mmbtu

* Overall TNB Net thermal efficiency was taken from TNB 2010 Annual Report

* Overall TNB Net thermal efficiency was taken from TNB 2010 Annual Report

New Cogeneration plant is economically feasible

Economics results for 20 years (from Year 2011-2032)

Item	Cost (RM)	
ROI	17.8 %	
NPV@ 10%	RM 71.9 million	
Payback period	6.5 years	

ltem	Cost (RM)	
ROI	26.7%	
NPV@ 10%	RM 147.6 million	
Payback period	3.5 years	

- INTRODUCTION TO PETRONAS GAS BERHAD (PGB)
- BACKGROUND
 - Current process operation and utilities at GPP A and GPP B

• PGB'S PROPOSAL FOR COGENERATION SYSTEM

• Process operation and utilities with cogeneration system

• JUSTIFICATION FOR COGENERATION SYSTEM

- Improved reliability of sales gas supply to the country
- Sales gas saving to the country
- Energy efficiency
- Attractive economics
- CONCLUSION

- Transfer of operational risk from TNB to PGB for the security of supply for sales gas to the country
- Improved reliability of sales gas supply to the nation from 93.8% to 99.9%, above world class reliability standard.
- Net reduction of sales gas volume available to the nation by 3.93 mmscfd
- Improved overall thermal efficiency from 39.4% to 69% at GPP A and 71% at GPP B.
- **Economically feasible** with Internal Rate of Return (IRR) of 17.8% and 26.7% at GPP A and GPP B respectively.

BACKUP SLIDES

Calculation

Upstream reliability = <u>Actual supplied volume</u>

2512

Power supply reliability to GPP (based on 4 years data)

Year	GPP A Outage (hr)	GPP B Outage (hr)	GPP A Reliability (%)	GPP B Reliability (%)
2010	1.2	0	99.99	100
2009	0	0	100	100
2008	48.25	0	99.45	100
2007	0	0	100	100

Power generation thermal efficiency (extracted from TNB 2010 Annual Report, pg 121)

Treases

(%)

IGU

KUALA LUMPUR

www.tnb.com.my

Graph 13: Thermal Efficiency by Station (%)

Economic assumptions (1/2)

NO	DESCRIPTION	INFO / VALUE ASSUMPTIONS
1	Maximum Demand During Peak Period	GPP A : 21 MW , GPP B : 22 MW
2	Total power consumption	GPP A : 178 Mil kWh , GPP B : 186 kWh
3	Natural Gas Price	RM 10.70/ mmbtu according to GPTA until 2014. By the year 2015 onwards, RM 38/mmbtu as per PEMANDU guideline
4	Total CAPEX Cost	RM 142.6 mil (per GPP)
5	Project Life	20 Years. Commercial Operation Date (COD) -July 2013
6	Debt : Equity Ratio	100 % Equity
7	Depreciation	Straight line over 20 years
8	Capital Allowance	1 st Yr: 34%, 2 nd -5 th Yr: 14%,6 th Yr: 10%
9	Reinvestment Allowance	60 %
10	Corporate Income Tax	25 %
11	TNB Electric Tariff Charge	GPP A : E2 Rate, GPP B : E3 Rate
12	TNB Electricity Annual Increment	3.0% (Based on historical data)
13	Non Firm Stand-by From TNB	GPP A: 9 MW, GPP B : 10 MW

Economic assumptions (2/2)

NO	DESCRIPTION	INFO /VALUE ASSUMPTIONS
14	Discount Rate	10%
15	Exchange Rate	1 USD = RM 3.03 as publish by Bank Negara Malaysia on the 22 nd Feb 2011
16	GT ,Generator & HRSG Maint	RM 2.3 Million /yr
17	Annual Increment of Gas Turbines & Generator Maintenance Cost	3 % (Based on average US-CPI index)
18	GTG and HRSG Reliability	96%

Existing GPP-A Steam System Overview (GPP Generates 78 t/hr of steam from fired-boilers)

IGU

KUALA LUMPUR

NOR D GAS CONTRENC

GPP-A Steam System Overview – Post COGEN project i.e. able to shutdown 4/6 fired-boilers

KUALA LUMPUR

VOR DIGAS CONTRENCT

IGU

Existing GPP-B Steam System Overview (GPP Generates 63 t/hr of steam from fired-boilers)

IGU

GPP-B Steam System Overview – Post COGEN project i.e. able to shutdown ALL fired-boilers

IGU