Combined Heat and Power (CHP)

COGENERATION at PETRONAS’ Gas Processing Plant

By: Fairos Roslan, Head of Business Development, PGB

Date: 5 June 2012

Venue: Room 403/404, KL Convention Center
Objective

- To share a case study example of Combined Heat and Power (CHP) on PETRONAS Gas Berhad (PGB)’s Cogeneration Plant installation project at Gas Processing Plant (GPP) A and B Complex, in Terengganu, Malaysia
INTRODUCTION TO PETRONAS GAS BERHAD (PGB)

BACKGROUND
- Current process operation and utilities at GPP A and GPP B

PGB’S PROPOSAL FOR COGENERATION SYSTEM
- Process operation and utilities with cogeneration system

JUSTIFICATION FOR COGENERATION SYSTEM
- Improved reliability of sales gas supply to the country
- Sales gas saving to the country
- Energy efficiency
- Attractive economics

CONCLUSION
Corporate Profile of PETRONAS GAS BERHAD (PGB)

- Private Limited Company
 - 23 May 1983

- Public Limited Company
 - 28 March 1995

- Listed on KLSE Main Board
 - 4 September 1995

- PETRONAS owns 60.63% equity
Business Division of PETRONAS GAS BERHAD (PGB)

- **Plant Operations Division (POD)**
 - Separating natural gas into Sales Gas, Ethane, Propane, Butane & Stabilised Condensate

- **Transmission Operations Division (TOD)**
 - Transporting and distributing of Sales Gas, Ethane, Propane & Butane via pipelines

- **Centralised Utility Facilities (CUF)**
 - Producer of industrial utilities i.e. Power, Steam, Nitrogen, Oxygen, cooling water, etc

- **Re-Gasification Terminal Division (RGTD)**
 - Operation of the LNG Regasification Facilities and Jetty

- **Headquarters (Enablers)**
 - HSE, Finance, HRM, Commercial, Project Team, etc.
PETRONAS GAS BERHAD (PGB) plays a major role in adding value to Natural Gas.
INTRODUCTION TO PETRONAS GAS BERHAD (PGB)

BACKGROUND
• Current process operation and utilities at GPP A and GPP B

PGB’S PROPOSAL FOR COGENERATION SYSTEM
• Process operation and utilities with cogeneration system

JUSTIFICATION FOR COGENERATION SYSTEM
• Improved reliability of sales gas supply to the country
• Sales gas saving to the country
• Energy efficiency
• Attractive economics

CONCLUSION
Current Process Operation and Utilities setup at the Gas Processing Plant (GPP)-A

GPP A

Feed Gas
- Pretreatment
- Acid Gas Removal
- Dehydration

• Low Temperature Separation Unit
• Product Recovery Unit

Customers

Product
- Sales gas (C1)
- Ethane (C2)
- Propane (C3)
- Butane (C4)
- Condensate (C5+)

Sales Gas for Internal Gas Consumption (IGC)

Electricity
- Maximum demand: 21 MW
- Annual consumption: 178 Mil kWh

Other utilities
- E.g., Instrument Air, Nitrogen, Cooling Water

Steam system
- 390 degC, 39.5 bar
- Demand: 279 t/hr

Fuel Gas System
- 28 degC, 4.5 bar
- Gas Turbines, Furnace, Fired boilers

Notes:
* TNB: Tenaga Nasional Berhad i.e. national electricity grid/supplier

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum Demand (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPP 1</td>
<td>4.5</td>
</tr>
<tr>
<td>GPP 2</td>
<td>5.5</td>
</tr>
<tr>
<td>GPP 3</td>
<td>5.5</td>
</tr>
<tr>
<td>GPP 4</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

Notes:
HRSG: Heat Recovery Steam Generator
IGC: Internal Gas Combustion

From TNB*
21 MW
Current Process Operation and Utilities setup at the Gas Processing Plant (GPP)-B

Feed Gas
- Pretreatment
- Acid Gas Removal
- Dehydration

Electricity
- Maximum demand: 22 MW
- Annual consumption: 186 Mil kWh

Other utilities
- E.g., Instrument Air, Nitrogen, Cooling Water

Steam system
- 410 degC, 44 bar
- Demand: 173 t/hr

Fuel Gas System
- 28 degC, 4.5 bar
- Gas Turbines, Furnace, Fired boilers

Product
- Sales gas (C1)
- Ethane (C2)
- Propane (C3)
- Butane (C4)
- Condensate (C5+)

Sales Gas for Internal Gas Consumption (IGC)

Location
<table>
<thead>
<tr>
<th>Maximum Demand (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPP 5 & 6</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

Notes:
* TNB: Tenaga Nasional Berhad i.e. national electricity grid/supplier

Notes:
HRSG: Heat Recovery Steam Generator
Summary of GPP utilities

<table>
<thead>
<tr>
<th>UTILITY</th>
<th>SUPPLY CONDITION</th>
<th>DESCRIPTION</th>
<th>CURRENT DEMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPP A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>11 kV</td>
<td>Maximum Demand</td>
<td>21,000 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual Electricity Consumption</td>
<td>178 million kWh</td>
</tr>
<tr>
<td>HP Steam</td>
<td>Pressure: 39.5 bar (abs) Temperature: 390 DegC</td>
<td>Total HP Steam Demand</td>
<td>279 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Fired Boilers</td>
<td>78 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Waste Heat Boilers</td>
<td>201 T/hr</td>
</tr>
<tr>
<td>Fuel Gas</td>
<td>Pressure: 4.5 barg Temperature: 28 degC</td>
<td>Total Consumption</td>
<td>36.6 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at gas turbines, furnace and other users</td>
<td>27.22 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at steam system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supp. Firing at HRSG: 4.23 mmscfd Fired boiler: 5.15 mmscfd</td>
<td></td>
</tr>
<tr>
<td>GPP B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>132 kV / 33 kV / 6.6kV</td>
<td>Maximum Demand</td>
<td>22,000 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual Electricity Consumption</td>
<td>186 million kWh</td>
</tr>
<tr>
<td>HP Steam</td>
<td>Pressure: 44 bar (abs) Temperature: 410 DegC</td>
<td>Total HP Steam Demand</td>
<td>173 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Fired Boilers</td>
<td>63 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Waste Heat Boilers</td>
<td>110 T/hr</td>
</tr>
<tr>
<td>Fuel Gas</td>
<td>Pressure: 4.5 barg Temperature: 28 degC</td>
<td>Total Consumption</td>
<td>31.5 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at gas turbines, furnace and other users</td>
<td>27.09 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at steam system</td>
<td>Fired boiler: 4.41 mmscfd</td>
</tr>
</tbody>
</table>
Presentation outline

• INTRODUCTION TO PETRONAS GAS BERHAD (PGB)

• BACKGROUND
 • Current process operation and utilities at GPP A and GPP B

• PGB’S PROPOSAL FOR COGENERATION SYSTEM
 • Process operation and utilities with cogeneration system

• JUSTIFICATION FOR COGENERATION SYSTEM
 • Improved reliability of sales gas supply to the country
 • Sales gas saving to the country
 • Energy efficiency
 • Attractive economics

• CONCLUSION
GPP-A installation of new COGEN unit will enable us to shutdown 2 fired-boilers while satisfying the steam demand.

Feed Gas
- Pretreatment
- Acid Gas Removal
- Dehydration

Cogeneration unit
- Generation Capacity: 12,300 kW x 2 units
- HRSG capacity: 25 t/hr x 2 units

Low temperature separation unit
- Product Recovery Unit

Sales Gas for Internal Gas Consumption (IGC)
- • Sales gas (C1)
- • Ethane (C2)
- • Propane (C3)
- • Butane (C4)
- • Condensate (C5+)

Customers

Electricity
- Maximum demand: 21 MW
- Annual consumption: 178 Mil kWh

Other utilities
- E.g., Instrument Air, Nitrogen, Cooling Water

Steam system
- E.g., Gas Turbines, Furnace, Fired boilers
- 390 degC, 39.5 bar
- Demand: 279 t/hr
- Gas Turbines, Furnace, Fired boilers

Fuel Gas System
- 28 degC, 4.5 bar
- (Supp.firing) 4.23 mmscfd
- 2.64 mmscfd
- 5.66 mmscfd

Electricity from COGEN
- 21 MW

Steam from COGEN
- 38 t/hr

HRSG
- 40 t/hr
- 78 t/hr

Fired Boiler
- 201 t/hr

GPP A

From TNB
- 0.5 MW
GPP-B installation of new COGEN unit will enable us to totally shutdown the operation of fired-boilers

Cogeneration unit
Generation Capacity: 12,300 kW x 2 units
HRSG capacity: 25 t/hr x 2 units

Electricity
Maximum demand: 22 MW
Annual consumption: 186 Mil kWh

Other utilities
E.g., Instrument Air, Nitrogen, Cooling Water

Steam system
410 degC, 44 bar
Demand: 173 t/hr

Fuel Gas System
28 degC, 4.5 bar
Gas Turbines, Furnace, Fired boilers

Product
- Sales gas (C1)
- Ethane (C2)
- Propane (C3)
- Butane (C4)
- Condensate (C5+)

Sales Gas for Internal Gas Consumption (IGC)

Feed Gas
Pretreatment
Acid Gas Removal
Dehydration

Low temperature separation unit Product Recovery Unit

Customers

Electricity
From TNB
0.5 MW

Cogeneration unit
Generation Capacity: 12,300 kW x 2 units
HRSG capacity: 25 t/hr x 2 units

Steam from COGEN
40 t/hr

Steam system

Fired Boiler

HRSG

Fuel Gas System

Sales Gas for Internal Gas Consumption (IGC)

Customers

Electricity
From TNB
0.5 MW

Cogeneration unit
Generation Capacity: 12,300 kW x 2 units
HRSG capacity: 25 t/hr x 2 units

Steam system
Steam from COGEN
40 t/hr

Fuel Gas System

Sales Gas for Internal Gas Consumption (IGC)

Customers
<table>
<thead>
<tr>
<th>UTILITY</th>
<th>SUPPLY CONDITION</th>
<th>DESCRIPTION</th>
<th>WITHOUT COGENERATION</th>
<th>WITH COGENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPP A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>11 kV</td>
<td>Maximum Demand</td>
<td>21,000 kW</td>
<td>21,000 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual Electricity Consumption</td>
<td>178 million kWh</td>
<td>178 million kWh</td>
</tr>
<tr>
<td>HP Steam</td>
<td>Pressure: 39.5 bar (abs) Temperature: 390 DegC</td>
<td>Total HP Steam Demand</td>
<td>279 T/hr</td>
<td>279 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Fired Boilers</td>
<td>78 T/hr</td>
<td>40 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Waste Heat Boilers</td>
<td>201 T/hr</td>
<td>200 T/hr</td>
</tr>
<tr>
<td>Fuel Gas</td>
<td>Pressure: 4.5 barg Temperature: 28 degC</td>
<td>Total Consumption</td>
<td>36.6 mmscfd</td>
<td>39.75 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at gas turbines, furnace and other users</td>
<td>27.22 mmscfd</td>
<td>27.22 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at steam system</td>
<td>Supp. Firing at HRSG: 4.23 mmscfd Fired boiler: 5.15 mmscfd</td>
<td>Supp. Firing at HRSG: 4.23 mmscfd Fired boiler: 2.64 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COGEN</td>
<td>-nil-</td>
<td>5.66 mmscfd</td>
</tr>
<tr>
<td>GPP B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>66 kV</td>
<td>Maximum Demand</td>
<td>22,000 kW</td>
<td>22,000 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual Electricity Consumption</td>
<td>186 million kWh</td>
<td>186 million kWh</td>
</tr>
<tr>
<td>HP Steam</td>
<td>Pressure: 39.5 bar (abs) Temperature: 390 DegC</td>
<td>Total HP Steam Demand</td>
<td>173 T/hr</td>
<td>173 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Fired Boilers</td>
<td>63 T/hr</td>
<td>0 T/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam generation from Waste Heat Boilers</td>
<td>110 T/hr</td>
<td>110 T/hr</td>
</tr>
<tr>
<td>Fuel Gas</td>
<td>Pressure: 4.5 barg Temperature: 28 degC</td>
<td>Total Consumption</td>
<td>31.5 mmscfd</td>
<td>33.31 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at gas turbines, furnace and other users</td>
<td>27.09 mmscfd</td>
<td>27.09 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumption at steam system</td>
<td>Fired boiler: 4.41 mmscfd</td>
<td>Fired boiler: 0 mmscfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COGEN</td>
<td>-nil-</td>
<td>6.15 mmscfd</td>
</tr>
</tbody>
</table>
• INTRODUCTION TO PETRONAS GAS BERHAD (PGB)

• BACKGROUND
 • Current process operation and utilities at GPP A and GPP B

• PGB’S PROPOSAL FOR COGENERATION SYSTEM
 • Process operation and utilities with cogeneration system

• JUSTIFICATION FOR COGENERATION SYSTEM
 • Improved reliability of sales gas supply to the country
 • Sales gas saving to the country
 • Energy efficiency
 • Attractive economics

• CONCLUSION
Sales Gas supply reliability to the country will improve from 93.8% to 99.9%

- **Offshore Feed Gas Supply Reliability**
 - 2010: 78.5%

- **Gas Processing Plant Reliability**
 - 2010: 99.6%

- **Gas Transmission Pipeline Reliability**
 - 2010: 99.9%

- **Power Supply to GPP Reliability**
 - 2010: 96 - 97%

Sales Gas Supply Reliability

- **2010**: 93.8%
- **2014**: 99.9%

On-going development by PETRONAS

- Development of new gas field
- Development of marginal fields.
- Re-gasification facilities by 2012
- Plant Revamp and Rejuvenation in 2013 - 2014
- Sustenance of performance
- Installation of cogeneration plant at GPP

Sales Gas supply reliability to the country

- **2010**: 93.8%
- **2014**: 99.9%

(1) Source data: POD Production Planning department
(3) Calculated based on GPP
(4) High reliability of power supply to GPP due to parallel operation with TNB. Cogen reliability is at 97.6% as per PGB project proposal
Sales Gas savings to the country is 3.93 mmcf/d

Total savings to the country: 3.93 mmcf/d

3.93 mmcf/d = 19 MW electricity can be generated

3.93 mmcf/d = RM 59.5 million/year @ Gas price = RM 38.00/mmbtu
Power generation efficiency comparison between TNB and PGB Cogeneration for GPP-A

INPUT

- **Fuel Input**
 - 4.31 mmscf/d
 - (45.9 x 10^6 kcal/hr)

- **Power Generation by TNB**
 - Efficiency: 39.4%*

- **Electricity generated**
 - 21.0 MW
 - (18.1 x 10^6 kcal/hr)

OUTPUT

- **Electricity generated**
 - 21.0 MW
 - (18.1 x 10^6 kcal/hr)

GPP A Cogen

- **Fuel Input**
 - 5.66 mmscf/d
 - (60.3 x 10^6 kcal/hr)

- **Efficiency**
 - 69%

- **Electricity generated**
 - 21.0 MW
 - (18.1 x 10^6 kcal/hr)

- **38 T/hr HP Steam generated**
 - (23.5 x 10^6 kcal/hr)

* Overall TNB Net thermal efficiency was taken from TNB 2010 Annual Report
Power generation efficiency comparison between TNB and PGB Cogeneration for GPP-B

INPUT

- **Fuel Input**
 - 4.51 mmscfd
 - \((48.0 \times 10^6 \text{ kcal/hr})\)

TNB

- **Efficiency** 39.4%*
- **Electricity generated**
 - 22.0 MW
 - \((18.9 \times 10^6 \text{ kcal/hr})\)

Output

- **Electricity generated**
 - 22.0 MW
 - \((18.9 \times 10^6 \text{ kcal/hr})\)

GPP B Cogen

- **Fuel Input**
 - 6.15 mmscfd
 - \((62.0 \times 10^6 \text{ kcal/hr})\)

- **Efficiency** 71%
- **Electricity generated**
 - 22.0 MW
 - \((18.9 \times 10^6 \text{ kcal/hr})\)

- **HP Steam generated**
 - 40 T/hr
 - \((25.1 \times 10^6 \text{ kcal/hr})\)

* Overall TNB Net thermal efficiency was taken from TNB 2010 Annual Report
New Cogeneration plant is economically feasible

Economics results for 20 years (from Year 2011-2032)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (RM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI</td>
<td>17.8 %</td>
</tr>
<tr>
<td>NPV@ 10%</td>
<td>RM 71.9 million</td>
</tr>
<tr>
<td>Payback period</td>
<td>6.5 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (RM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI</td>
<td>26.7%</td>
</tr>
<tr>
<td>NPV@ 10%</td>
<td>RM 147.6 million</td>
</tr>
<tr>
<td>Payback period</td>
<td>3.5 years</td>
</tr>
</tbody>
</table>
Presentation outline

- INTRODUCTION TO PETRONAS GAS BERHAD (PGB)

- BACKGROUND
 - Current process operation and utilities at GPP A and GPP B

- PGB’S PROPOSAL FOR COGENERATION SYSTEM
 - Process operation and utilities with cogeneration system

- JUSTIFICATION FOR COGENERATION SYSTEM
 - Improved reliability of sales gas supply to the country
 - Sales gas saving to the country
 - Energy efficiency
 - Attractive economics

- CONCLUSION
This COGENERATION Project will benefit the country in the aspect of...

• **Transfer of operational risk from TNB to PGB** for the security of supply for sales gas to the country

• **Improved reliability of sales gas supply** to the nation from 93.8% to 99.9%, above world class reliability standard.

• **Net reduction of sales gas volume** available to the nation by 3.93 mmscfd

• **Improved overall thermal efficiency** from 39.4% to 69% at GPP A and 71% at GPP B.

• **Economically feasible** with Internal Rate of Return (IRR) of 17.8% and 26.7% at GPP A and GPP B respectively.
Thank You
BACKUP SLIDES
Upstream reliability = Actual supplied volume

\[
\text{Plant capacity} \\
\frac{2321}{2512} = 92.4\% \\
\frac{1972}{2512} = 78.5\% \\
\frac{2437}{2512} = 97.0\% \\
\frac{2470}{2512} = 98.3\%
\]

* Calculated based on KPBI yr 2014
* Figures are calculated based on actual data

Power supply reliability to GPP (based on 4 years data)

<table>
<thead>
<tr>
<th>Year</th>
<th>GPP A Outage (hr)</th>
<th>GPP B Outage (hr)</th>
<th>GPP A Reliability (%)</th>
<th>GPP B Reliability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1.2</td>
<td>0</td>
<td>99.99</td>
<td>100</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2008</td>
<td>48.25</td>
<td>0</td>
<td>99.45</td>
<td>100</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Power generation thermal efficiency (extracted from TNB 2010 Annual Report, pg 121)
<table>
<thead>
<tr>
<th>NO</th>
<th>DESCRIPTION</th>
<th>INFO / VALUE ASSUMPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum Demand During Peak Period</td>
<td>GPP A: 21 MW, GPP B: 22 MW</td>
</tr>
<tr>
<td>2</td>
<td>Total power consumption</td>
<td>GPP A: 178 Mil kWh, GPP B: 186 kWh</td>
</tr>
<tr>
<td>3</td>
<td>Natural Gas Price</td>
<td>RM 10.70/mmbtu according to GPTA until 2014. By the year 2015 onwards, RM 38/mmbtu as per PEMANDU guideline</td>
</tr>
<tr>
<td>4</td>
<td>Total CAPEX Cost</td>
<td>RM 142.6 mil (per GPP)</td>
</tr>
<tr>
<td>5</td>
<td>Project Life</td>
<td>20 Years. Commercial Operation Date (COD) -July 2013</td>
</tr>
<tr>
<td>6</td>
<td>Debt : Equity Ratio</td>
<td>100 % Equity</td>
</tr>
<tr>
<td>7</td>
<td>Depreciation</td>
<td>Straight line over 20 years</td>
</tr>
<tr>
<td>8</td>
<td>Capital Allowance</td>
<td>1st Yr: 34%, 2nd-5th Yr: 14%, 6th Yr: 10%</td>
</tr>
<tr>
<td>9</td>
<td>Reinvestment Allowance</td>
<td>60 %</td>
</tr>
<tr>
<td>10</td>
<td>Corporate Income Tax</td>
<td>25 %</td>
</tr>
<tr>
<td>11</td>
<td>TNB Electric Tariff Charge</td>
<td>GPP A: E2 Rate, GPP B: E3 Rate</td>
</tr>
<tr>
<td>12</td>
<td>TNB Electricity Annual Increment</td>
<td>3.0% (Based on historical data)</td>
</tr>
<tr>
<td>13</td>
<td>Non Firm Stand-by From TNB</td>
<td>GPP A: 9 MW, GPP B: 10 MW</td>
</tr>
</tbody>
</table>
Economic assumptions (2/2)

<table>
<thead>
<tr>
<th>NO</th>
<th>DESCRIPTION</th>
<th>INFO /VALUE ASSUMPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Discount Rate</td>
<td>10%</td>
</tr>
<tr>
<td>15</td>
<td>Exchange Rate</td>
<td>1 USD = RM 3.03 as publish by Bank Negara Malaysia on the 22nd Feb 2011</td>
</tr>
<tr>
<td>16</td>
<td>GT ,Generator & HRSG Maint</td>
<td>RM 2.3 Million /yr</td>
</tr>
<tr>
<td>17</td>
<td>Annual Increment of Gas Turbines & Generator Maintenance Cost</td>
<td>3 % (Based on average US-CPI index)</td>
</tr>
<tr>
<td>18</td>
<td>GTG and HRSG Reliability</td>
<td>96%</td>
</tr>
</tbody>
</table>
Existing GPP-A Steam System Overview
(GPP Generates 78 t/hr of steam from fired-boilers)
GPP-A Steam System Overview – Post COGEN project i.e. able to shutdown 4/6 fired-boilers
Existing GPP-B Steam System Overview (GPP Generates 63 t/hr of steam from fired-boilers)
GPP-B Steam System Overview – Post COGEN project i.e. able to shutdown ALL fired-boilers

With COGEN in the future, GPP B are able to switch to AGRU motor pumps, thus, reducing the total steam demand from 173 t/hr to 138 t/hr.