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Introduction 

 Wish to increase the production of sustainable and CO2 neutral 
energy - "green house" effect – not enough inexpensive oil 

 

 Denmark aims to become independent of fossil fuel by 2050.  

 Energy strategy 2050 - from coal, oil and gas to green energy, The Danish Government, 

February 2011, http://www.ens.dk/Documents/Netboghandel%20-
%20publikationer/2011/Energy_Strategy_2050.pdf  

 

 Natural to look for photosynthesis products (biomass), but not 
enough biomass  

 H. Wenzel, “Breaking the biomass bottleneck of the fossil free society”, Version 1, 

September 22nd, 2010, CONCITO, http://www.concito.info/en/udgivelser.php  

http://www.ens.dk/Documents/Netboghandel - publikationer/2011/Energy_Strategy_2050.pdf
http://www.ens.dk/Documents/Netboghandel - publikationer/2011/Energy_Strategy_2050.pdf
http://www.ens.dk/Documents/Netboghandel - publikationer/2011/Energy_Strategy_2050.pdf
http://www.concito.info/en/udgivelser.php


Enough renewable energy? 

 Fortunately, enough renewable energy is potentially available.  

 

 The annual global influx from sun is ca. 3 - 41024 J - marketed energy 
consumption is ca. 51020 J;  

 1)A. Evans et al., in: Proc. Photovoltaics 2010, H. Tanaka, K. Yamashita, Eds., p. 109.  

 2) Earth's energy budget, Wikipedia, http://en.wikipedia.org/wiki/Earth's_energy_budget   

 3) International Energy Outlook 2010, DOE/EIA-0484(2010), U.S. Energy Information 
Administration, http://www.eia.gov/oiaf/ieo/index.html  

 

 Earth’s surface receives at least ca. 6 - 8,000 times more energy than we 
need. In deserts, intensity is higher than average at the same latitude – 
dry air 

http://en.wikipedia.org/wiki/Earth's_energy_budget
http://www.eia.gov/oiaf/ieo/index.html


Area needed 

 If 0.2 % of the earth’s area (ca. 1 mill. km2 or 15 % of Australia) 
and if collection efficiency = 10 %, we get enough energy. 

 

  Besides solar we also have geothermal and nuclear (fusion and 
fission) potential energy sources.  

 

 CO2 free nuclear - more efficient if affordable storage technology 
is available.  

 

 Important part of the solar energy is actually converted to 
biomass, hydro and wind energy – easier to harvest. 
 



We need electrolysis 

 Many technical principles are pointed out as suitable for storage 
technologies: 
• pumping of water to high altitudes  

• batteries  

• superconductor coil (magnetic storage)  

• flywheels  

• Thermo-chemical looping 

• Solar Thermal Electrochemical 

• Photo-electrochemical HER and CO2 reduction 

 Use electricity directly as much as possible! 

 All very important! But: first 4 are not for long distance (> 500 km) 
transport sector. 3 last are early stage research - may prove 
efficient in the future. 

 Therefore, within a foreseeable future: Electrolysis is necessary in 
order to get enough renewable fuels! 



Reversible electrochemical cell 

Reversible electrochemical cell - electrolyser for production of GNG, i.e. methane 
(SNG) and dimethyl ether (DME), or diesel – and fuel cell for electric power generation  



Principle of fuel cell and electrolyser 
(SOC) 

0.8 V 
1.4 V 

Working principle of a reversible Solid Oxide Cell (SOC). The cell can be 

operated as a fuel cell, SOFC (A), and as an electrolysis cell, SOEC (B). 

850 C       EMF ca. 1.1 V 
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Why SOC?  Thermodynamics 

  
 
 

Ecell = Etn 

i  Ecell - DG/2F  

Price  1/i     [A/cm2] , 

 DH/DG  > 1     ,    h  =  100 %  at E = Etn   (no heat loss) 

 
 
 
 

Energy (“volt”) = Energy (kJ/mol)/2F  
Etn  = DH/2F = Thermoneutral potential 



Ni/YSZ support 

Ni/YSZ electrode 

YSZ electrolyte 

LSM-YSZ electrode 

Ni-YSZ supported SOC 

10 mm      Acc. voltage: 12 kV        SE image LSM = Lanthanum Strontium Manganate 
YSZ = Yttria Stabilized Zirconia 
Ni = Nickel 



Cells stacks 

 To operate at useful voltages several cells, e.g. 50, are stacked in 
series 
 

 High energy density: Stack electric power density of  3 
kW/liter demonstrated with Topsoe cell stacks in electrolysis 
mode 
 

 Scalable technology: 
From kW to MW 

 



Cell performance 

i - V curves for a Ni-YSZ-supported Ni/YSZ/LSM SOC: electrolyzer (negative cd) and fuel 
cell (positive cd) at different temperatures and steam or CO2 partial pressures - balance 
is H2 or CO. S.H. Jensen et al., International Journal of Hydrogen Energy, 32 (2007) 3253 

World record ! 



Some early results 

We get pressurized hydrogen with 
lower electricity input! 

   



1 kW - 10-cell Topsoe stack – 12×12 cm2, 
Risø DTU test 
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850 ºC, -0.50 A/cm2 or -0.75 A/cm2, 45 % CO2 / 45% H2O / 10 % H2,  
cleaned gases. 
S. Ebbesen et al., Int. J. Hydrogen Energy, 36, (2011) 7363  



Production of syngas (SOEC case) 

 Reaction Schemes: 

 The overall reaction for the electrolysis of steam plus CO2 is: 

 H2O + CO2 + heat + electricity  H2 + CO + O2  (1) 

  

 This is composed of three partial reactions. At the negative 
electrode: 

 H2O + 2e-  H2 + O2-     (2)  

 CO2 + 2e-  CO + O2-     (3) 

  

 and at the positive electrode: 

 2 O2-  O2 + 4e-      (4) 



Methane, Methanol and DME 
synthesis 

 CO + 3 H2  CH4 + H2O 

 Ni - based catalysts 

 190 C – 450 C 

 3 MPa, i.e. pressurized 

 in principle possible to produce inside SOEC stack on Ni-electrode - but very 
low equilibrium CH4 concentration at 650 C and above 

 

 CO + 2 H2  CH3OH 

 2 CO + 4 H2  (CH3)2O + H2O 

 Cu/ZnO-Al2O3 catalyst  

 200 C - 300 C 

 4.5 - 6 MPa, again the electrolyser should be pressurized 

 

 Another route to CO/syngas via shift reaction: H2 + CO2  H2O + CO 

 



Why synthetic hydrocarbons? 
The energy density argument 

Storage type MJ/L MJ/kg 
Boiling 

point, C 
  

Gasoline 33 46 40 – 200   

Dimethyl ether - DME 22 30 - 25   

Liquid methane 24 56 -162 

Liquid hydrogen 10 141 -253   

Compressed air – 20 MPa 0.1 0.4   

Water at 100 m elevation 10-3 10-3     

Lead acid batteries  0.4 0.15     

Li-ion batteries  1 0.5     

Comparison of Energy Storage Types. Only the batteries are 

including containers. 



Why synthetic fuel? The power 
density argument 

 Gasoline filling rate of 20 L/min equivalents 11 MW of power and 
means it takes 2½ min to get 50 l = 1650 MJ on board 

 

 For comparison: Li-batteries usually requires 8 h to get recharged. 
For a 300 kg battery package (0.5 MJ/kg) this means a power of ca. 
3.5 kW i.e. it takes 8 h to get 150 MJ on board. 

 

 The ratio between their driving ranges is only ca. 5, because the 
battery-electric-engine has an efficiency of ca. 70 % - the  gasoline 
engine has ca. 25 %. 



Visions for synfuels from electrolysis 
of steam and carbon dioxide 

1. Big off-shore wind turbine parks coupled to a large SOEC – 
produce CH4 (synthetic natural gas, SNG) - feed into existing 
natural gas net-work (in Denmark). 

 

2. Large SOEC systems - produce DME, gasoline and diesel - Island, 
Canada, Greenland, Argentina, Australia … geothermal, hydro, 
solar and wind.  

 

3. Target market: replacement of natural gas and liquid fuels for 
transportation 

 

4. All the infrastructure exists!! 
 



Vision, Biomass - CO2 recycling  
  
 



New SOC production facility  
Topsoe Fuel Cell A/S 

 Inauguration: April 2009 

 Capacity ≈ 5 MW/yr 

 Investment: >13 mio. EUR 

Advanced technology – industrial relevance – low 
production cost 
 

DTU Energy Conversion, Haldor Topsoe 
A/S and Topsoe Fuel Cell A/S have close 
cooperation around solid oxide cell 
technology. 



Topsoe SynGas Technologies 

 Synthesis Gas 

 Ammonia 

 Hydrogen 

 Carbon Monoxide 

 SNG 

 Methanol 

 DME 

 Gasoline - TIGAS 

 

Oryx GTL, Qatar  – 34,000 bbl/d 

2000 TPD Methanol Plant  



Combining Technologies 
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The Wind Scenario of the national Danish Transmission System Operator, 
Energinet.dk’s visions for a fossil fuel free Denmark in 2050 



Biogas to SNG via SOEC and methanation of the 
CO2 in the  biogas 

Biogas

Oxygen

Water

Condensate

SNG

Steam
Methanator

SOEC



H2 production – economy estimation 

  *  Conversion of H2 to equivalent crude oil price is on a pure energy content (J/kg) 
basis 

  

Estimated cost of CH4:  
2 – 3 times this, i.e. 150 
$/Barrel  



Problems in commercialization 

 Costs, costs and costs, which have different disguises: 

 

 Fabrication cost 

 Performance/efficiency 

 Durability 

 

 Risk = reliability 

 

 Annoyance and disturbance of people (noise, vibration, ugly 
appearance,.....)  

 

 We have to improve it all – and it is a never ending process 
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