

25th world gas conference

"Gas: Sustaining Future Global Growth"

Best Practices

WOC2-SG2.2 report

By: Hélène GIOUSE, SG2.2 leader

Date: 6th of June

CS2.3: Competencies & Innovative

Technologies For UGS

Patron

Host

Host Sponsor

Best Practices for UGS

Skills and competencies

Best Practices

Two topics were addressed during the triennium by the Study-Group 2.2

- Methane emission reduction in UGS operation
- Well integrity management

Gas storage operation is not a major contributor to methane emission: approx 5% of the gas chain (excluded oil and gas production branch)

But

- Methane global warming power is 21 to 23 times higher than that of CO2, so the release into the atmosphere of 1000 m³(n) of methane (natural gas) is the same as releasing 16.33 tCO2e.
- Every branch of the gas industry is required to promote best practices in the field of emission reduction
 - To change the way of thinking/acting of every company /every professional
 - To mitigate global climate change
 - To save cost of operation
- IGU has been involved for years in the evaluation of emissions and the promotion of best practices for methane emissions reduction:
 - One reference of this study is the report of Study Group 8.1 on "Methane emission caused by the gas industry worldwide " WGC 2000 (Nice, France)

- 1. A questionnaire was sent to all members of WOC2.
- Three simple questions were asked:
 - Are there regulations in your country about methane emission?
 - What is the **ranking** of the Sources of emissions for UGS operation.
 - What are your Best practices?
- 12 answers mainly from Europe and CIS were obtained
- 2. A review of environmental reports that all major companies in oil and gas business are publishing every year as part of their annual report, especially that are registered ISO 14001.

Ranking of sources

- 1. compressor
- 2. venting part of facilities for servicing
- 3. well servicing including testing

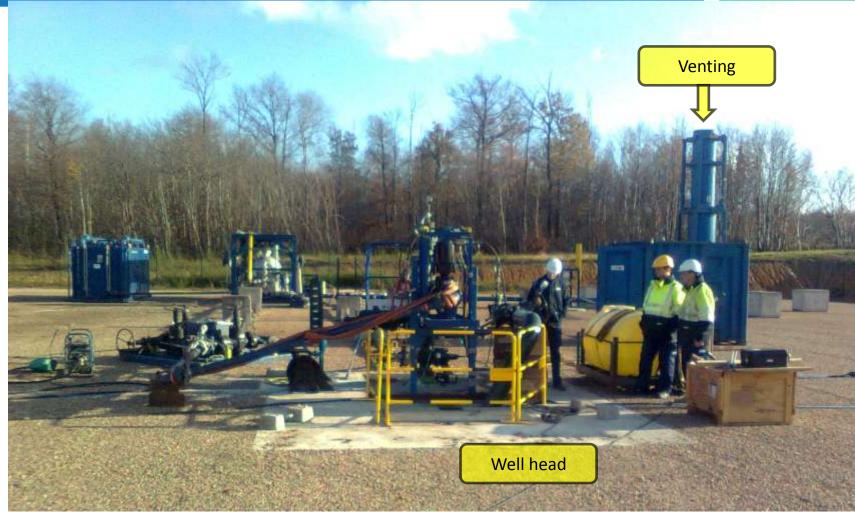
Best Practices

- control of emission of seals of compressor by either gathering leak system for reinjecting in pipes or installation of encapsulated compressor
- recovery of gas during planned venting, including well testing, by re-injection in pipes.

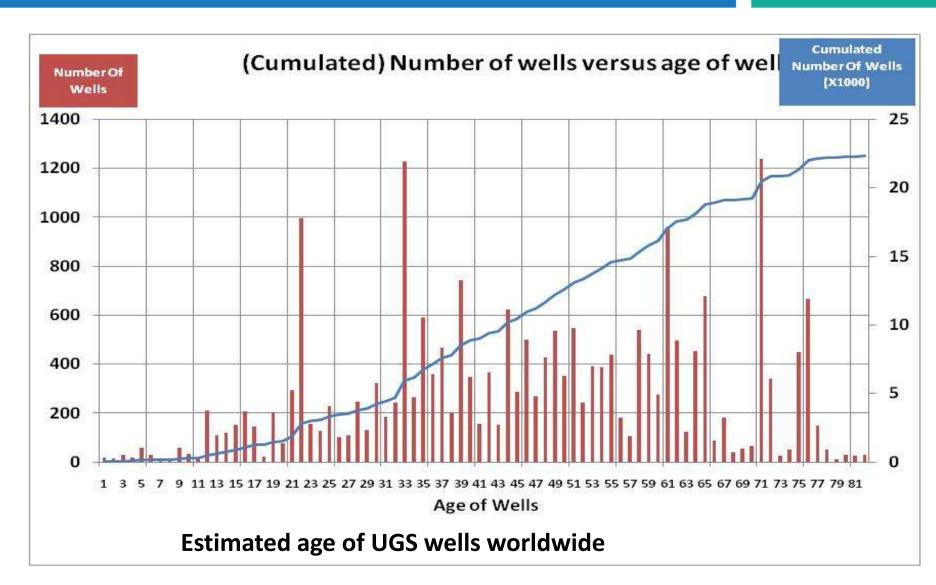
Emission factor

- Definition: the average ratio of methane emission compared to working (or cycled) gas volume
- Approx 500 m³(n) per million m³(n) of working gas, i.e. **0.05 %**.
- In the IGU 2000 report, the average emission factor was estimated to **0.1% of the** working gas volume (0,05% at the lowest and 0,7% at the maximum).

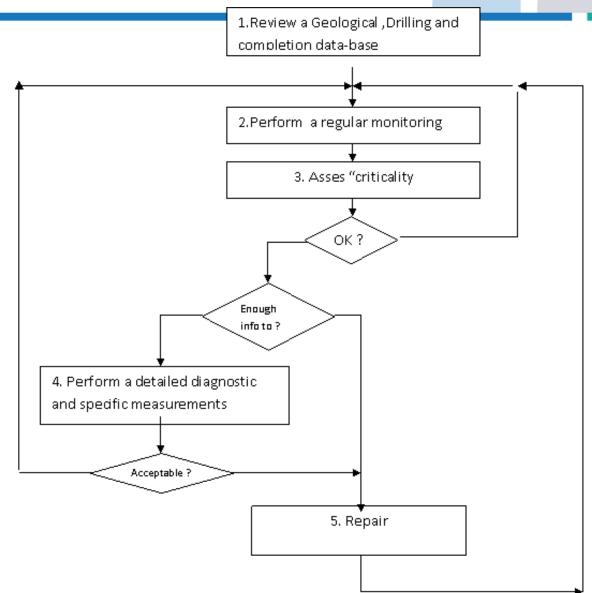
Encapsulated compressor installation on a storage facility



Preparing the clean-up of a well


Methane emission reduction – Conclusion

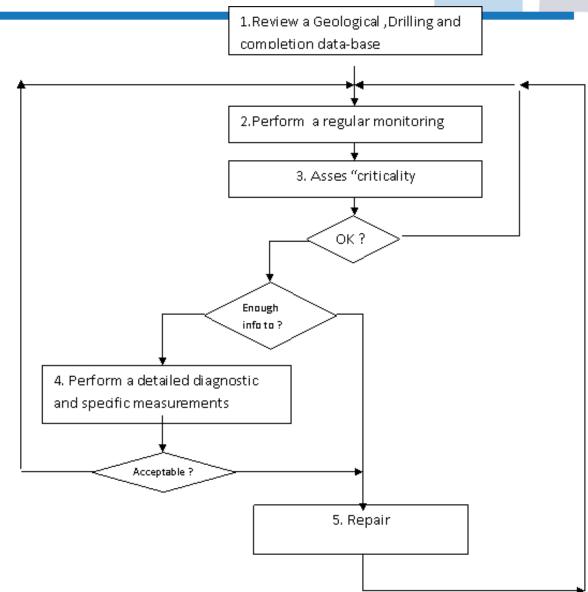
- Even if UGS is very low methane emitting activity, the emission factor has decreased in the recent years
- This has been made mainly by voluntary efforts of the operators, since regulations in the field of methane emission are not broadly implemented.
- Minds and practices are changing!



Review

- 1.Review a Geological , Drilling and completion data-base
- Initial data (geological, logging, drilling, completion) data are very important
- All wells of the area are important, exploration wells, operation wells, observation wells, even old production wells not used or abandoned.

Monitor


- 2. Perform a regular monitoring
- Parameters/ Frequency depending on feasibility/regulation

Assess

- 3. Asses Criticality (= probability of failure combined with importance consequences of the failure)
- = risk assessment methods
- List of wells having integrity problems

Diagnostic

- 4.Detailed diagnostic and specific measurements
- Value of the information versus Cost of the information to be considered
- Investigation without work-over preferred
- Several measurements and time are needed

Repair

- 5. Repair job
- Value versus Cost versus Risk of the operation toe be considered
- Operation without work-over preferred
- Specific programme (combining diagnostic/repair?)

The cycle is over

End

- **IGU WOC2 2009**: "Wells maintenance programs are mainly based on case by case approach. But this method should evolve towards a long term planned maintenance program driven by risk assessment. At this moment this method is not yet used frequently" (New Technologies Enquiry)
- "Well Integrity Management" is a "new" concept
- This "new" concept /methodology/set of practices could help UGS operators to manage aging wells and go on safe operation.