

25th world gas conference

"Gas: Sustaining Future Global Growth"

The Innovation behind the CNG/PETROL Bi-fuel-hybrid vehicle

In pursuit of the ultimate eco-friendly car

By: Akihiro Yamada, Naoko Fukutome

Date: 6 June, 2012

Venue: Convention Center Hall 403

Patron

Host

Host Sponsor

1. Background: Why did we develop this car?

- In Japan, the transportation is responsible for about 20% of total CO₂ emissions.
- "Act on the Rational Use of Energy"
 Car makers have been developing fuel-efficient vehicles such as the petrol-fueled hybrid, and introducing them to the market one after another.
- The number of NGVs in Japan is almost saturated.

"How to break this situation?"

Aims: "NGV" - for a Low Carbon Society!

■ Further improvement in CO₂ emissions reduction

Mathematics shows ---

Petrol-fueled cars: CNG cars = 100:80

Petrol-fueled cars: Petrol hybrid cars = 100:50

Petrol-fueled : Petrol hybrid : CNG hybrid

= 100 : 50 : 40

- Driving comfort-ability
 - Longer cruising distance
 - Utilise natural gas and petrol as a bi-fuel
 - Overcome disadvantages in CNG-fueled vehicles

2. What did we do to realize this car? Base Vehicle:

- "SAI" TOYOTA
- Petrol hybrid system, 2.4-liter engine
- 23.0 km/L (by catalogue)
- CNG cylinder: 77.7 liter x 1

Add the great performance of CNG vehicle on the base car's high performance

CNG cylinder

- Filled volume: 15.5m³
- Structure: Aluminum alloy reinforced by carbon fiber with plastics coating
- Weight: 25.7 kg
- Container Screen:
 prevents both damages for
 the cylinder and from
 condensation on the
 cylinder

To prevent gas inflow to the inside of the vehicle; in case of gas leak from the gas cylinder valve, the gas is released through this duct.

Control

Sub-computer

To send control signal to

sub-computer

changing button

to petrol driving

mode

■ CO₂ reduction effects

i de la companya de					
	Petrol-powered	'SAI': Petrol Hybrid	'SAI': CNG Bi-fuel Hybrid		
Fuel efficiency	11.5 km/l	23.0 km/l	29.8 km/m ³		
CO ₂ emissions coefficient	2.32 kg/l	2.32 kg/l	2.29 kg/m ³		
CO ₂ emissions / 1km cruising	202 g	101 g	77 g		
% of CO ₂ emissions	100	50	38		

Cruising distance of Bi-fuel

	CNG	Petrol	
Fuel efficiency	29.8 km/m ³	23.0 km/L	
Fuel consumption	15.5 m ³	55 L	
Calculated value for cruising distance	461 km	1,265 km	
Total calculated cruising distance	1,726 km		

3. Result: How was the result?

- Driving-ability:
 - CNG-fueled vehicles' disadvantage: acceleration
 The engine and the motor work together to provide the power to pick up speed.
 - The driving feeling has been improved
- CO₂ emissions reduction:
 - Lowered the set temperature of the coolant → 40 degrees C
 - The engine starts by petrol → within a few seconds the vehicle shifts to CNG operations → the total length of driving with CNG increases

Longer CNG driving achieves less CO₂ emissions

Fuel	Driving section	CNG filled volume	Petrol filled volume	Driving distance	Volume of energy consumption	Volume of CO ₂ emissions	% of CO ₂ emissions
		m³	L	km	MJ/km	kg/km	%
Bi-fuel hybrid	General roads	24.44	9.92	618	2.34	0.128	86.5
	Motorways	34.52	7.1	895	2.01	0.107	87.3
Petrol hybrid	General roads	_	11.65	183	2.20	0.148	100
	Motorways	_	23.14	439	1.82	0.122	100

- **Bi-fuel** mode achieves **less CO₂** emissions versus petrol mode; although it consumes more energy, CNG and petrol.
- Bi-fuel hybrid achieves 13% reduction (average) versus petrol hybrid,
 and should achieve 56% reduction versus usual petrol-fueled vehicle.

< Petrol-fueled V : Petrol HV : CNG Bi-fuel HV = 100 : 50 : 44 >

Remaining challenges of the CNG/Petrol bi-fuel hybrid car

- Improve the compression ratio
 - Because this vehicle is driven with the original base car's engine;
 driven at the compression ratio set for a petrol-fueled engine.

the efficiency cannot be achieved higher as expected as a CNG vehicle

- Durability of the main valve
 - To improve fuel consumption, this vehicle has a system to stop the engine when the accelerator is released even while driving; thus, the main valve also repeats opening and closing numerous times.

the main valve should require a super-high durability or more frequent maintenance

4. Conclusion: Which direction is the road ahead of us? IGU

NGV market in Japan: fleet

- **Economic potential**
 - Worldwide economic crisis
 - Natural Gas price: "Japan Premium", yet less volatile and almost always cheaper than Petrol
 - Highly volatile Petrol price, and often it hikes
- **Energy Security**
 - What did we learn from "March 11"?

Types and Performance in the fleet market

Expand or Narrow the choice?

- Types
 - Heavy Duty Truck : 25t (total weight)
 - Truck: 2t, 3t, 4t
 - Garbage truck
 - Automobiles: van, station wagon, etc.

- Performance
 - CNG HV
 - Bi-fuel HV
 - Bi-fuel
 - CNG

Thank you very much for your precious time!