

25th world gas conference

"Gas: Sustaining Future Global Growth"

Exports of LNG from North America

Commercial, Legal and Regulatory
Considerations in Launching a New LNG
Export Project

By: Steven R. Miles
Baker Botts L.L.P.
June 2012
Kuala Lumpur

Patron

Host

Host Sponsor

Presenter Introduction

Recent LNG Deals:

Developing new LNG liquefaction projects:

Sabine Pass LNG Wheatstone LNG Yamal LNG
 Peru LNG Darwin LNG Qatargas 3
 Tangguh LNG Equatorial Guinea Angola LNG
 Brass LNG Sakhalin II Pacific Rubiales

- Developing the first U.S. LNG export project in 40 years
- Securing the first LNG supply into new terminals in Brazil, Chile, China, Dominican Republic, E.U., India, Indonesia, Mexico, Puerto Rico, & U.S.
- Negotiating some \$500 Billion in LNG sales agreements
- Chartering 73 LNG vessels (~20% of world fleet) & 5 FSRUs
- Co-Chair of industry-wide effort for the recently completed uniform LNG Master Sales Contract

Experience with over 75 LNG Projects

Focus and Overview of Key Topics

- 1. North American Gas and LNG Market
- 2. Common Project Structures in an LNG Export Project
 - Integrated Project Model
 - Project Company (or Merchant) Model
 - Tolling Model
- 3. Operational and Commercial Issues Associated with Creating a Bi-Directional Facility
- 4. LNG Regulatory Regime
 - FERC authorization
 - DOE Export authorization
 - Policy Issues
- 5. Final Remarks

- North American LNG Import Market Failed to Materialize
 - Between 2005 and 2009, utilization rate for LNG import terminals was only 21.4%.
 - United States now seen as a market of last resort for LNG imports.
- Development of Unconventional Gas led to North America having an estimated 482 Trillion Cubic Feet of Gas Reserves -- about 100 years supply
- North American Natural Gas Prices and Natural Gas Prices Diverged from Prices in Europe and Asia
 - Divergence from oil-linked prices is particularly profound.

Attractive Oil Linked Market Prices

Spread between oil linked and U.S. natural gas prices ~ \$9-\$13/MMBtu

- Project Developers have Responded to Opportunities
 Presented by Abundant Gas Supply and Relatively Low
 Prices
 - Plans to restructure and expand use of LNG terminals to accommodate liquefaction and LNG export projects.
 - Developers have sought approval for numerous proposed LNG export projects in North America.

Import Terminal

PROPOSED TO FERC

- 1. Robbinston, ME: 0.5 Bcfd (Kestrel Energy Downeast LNG)
- 2. Astoria, OR: 1.5 Bcfd (Oregon LNG)
- 3. Calais, ME: 1.2 Bcfd (BP Consulting LLC)
- 4. Corpus Christi, TX: 0.4 Bcfd (Cheniere Corpus Christi LNG)

Export Terminal

PROPOSED TO FERC

- 5. Freeport, TX: 1.8 Bcfd (Freeport LNG Dev/Freeport LNG Expansion/FLNG Liquefaction)
- 6. Corpus Christi, TX: 1.8 Bcfd (Cheniere Corpus Christi LNG)
- 7. Coos Bay, OR: 0.9 Bcfd (Jordan Cove Energy Project)
- 8. Lake Charles, LA: 2.4 Bcfd (Southern Union Trunkline LNG)

PROPOSED CANADIAN SITES IDENTIFIED BY PROJECT. SPONSORS

- 9. Kitimat, BC: 0.7 Bcfd (Apache Canada Ltd.)
- 10. Douglas Island, BC: 0.25 Bcfd (BC LNG Export Cooperative)

POTENTIAL U.S. SITES IDENTIFIED BY PROJECT SPONSORS

- 11. Cove Point, MD: 1.0 Bcfd (Dominion Cove Point LNG)
- 12. Hackberry, LA: 1.7 Bcfd (Sempra Cameron LNG)
- 13. Brownsville, TX: 2.8 Bcfd (Gulf Coast LNG Export)
- 14. Astoria, OR: 1.25 Bcfd (Oregon LNG)

POTENTIAL CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS

15. Prince Rupert Island, BC: 1.0 Bcfd (Shell Canada)

As of April 26, 2012

Office of Energy Projects

- Existing Infrastructure Supports Development of Proposed LNG Export Projects
 - Extensive natural gas infrastructure already exists in North America.
 - East and Gulf Coast: existing facilities already have pipelines connecting them to the natural gas transportation grid.
 - West Coast: planned export projects can incorporate existing pipeline infrastructure to access stranded sources.

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI. Updated: May 9, 2011

US Natural Gas Pipeline Network, 2009

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

- North America Commercial and Regulatory Frameworks Are Well-Established, Facilitating Gas Purchases
 - Well-established commercial natural gas market:
 - Standard model contracts are routinely used (i.e., NAESB model contract).
 - Financial hedging is available through the New York Mercantile Exchange or the Intercontinental Exchange.
 - Robust gas market with a larger number of participants reduces market transaction costs.
 - Well-established regulatory regime in place:
 - Regulatory process is transparent.
 - Even though faced with novel issues, many developers seem comfortable with process.

Common Project Structures – LNG Export Projects

Common Project Structures – LNG Export Projects

- Three primary project structures for LNG liquefaction projects:
 - <u>Integrated Project Model</u>: Participants share a unity of interest in the LNG value chain.
 - Project Company (or Merchant) Model: Project company that owns the liquefaction facility purchases natural gas as feedstock from a seller and resells LNG to off takers.
 - Tolling Model: LNG plant does not take title to natural gas feedstock or LNG produced at the plant, but provides liquefaction and processing services.

Common Project Structures – Integrated Upstream Structure

Common Project Structures – Integrated Project Structure

Benefits:

- Alignment of interest among PSC Contractors.
- Ability to share costs along entire LNG supply chain.
 - May have tax and accounting benefits (i.e., use early losses from LNG plant construction to offset any natural gas liquids production).
- Promotes financeability by reducing cross-default risk.
- Each natural gas supplier can control its own marketing.

Risks:

 Requires identical ownership upstream and downstream (structuring with TrainCos can allow future trains with separate ownership).

Common Project Structures – Project Company Structure

Common Project Structures – Project Company Structure

Benefits:

- Allows Project Co. to generate potentially higher returns based on value of LNG/gas price spread.
- Maximizes flexibility in ownership of various assets.
- Provides an opportunity when upstream owners are unwilling to invest in liquefaction facility.

Risks:

- Project Co. assumes market and counterparty default risks both upstream and downstream.
- Requires Project Co. to obtain finance for plant construction based on LNG sales and project revenues.

Common Project Structures – Tolling Structure

Common Project Structures – Tolling Structure

Benefits:

- Reduce/avoid exposure to commodity price and marketing risks.
- Does not require that all upstream parties be owners of LNG plant.
- Third-party ownership of gas/LNG throughout chain may reduce some taxes for LNG plant owners.
- Reduced risk can help project financing of LNG plant.

Risks:

- Sponsors do not profit from LNG sales.
- If the tolling party is an affiliate of sponsor, security and cross-default issues can affect financing.

Operational and Commercial Issues Associated with Creating a Bi-Directional LNG Facility

Operational and Commercial Issues Associated with Creating a Bi-Directional LNG Facility

- Considerations upon Reconfiguring an LNG import
 Project as a Bi-Directional Facility
 - Effects on existing customers
 - Concerns of existing capacity holders
 - Effects on the associated pipeline to accommodate both imports and exports
 - Additional complexity of operations

Operational and Commercial Issues Associated with Creating a Bi-Directional LNG Facility

Tools Available to Manage Limited LNG Capacity

- Terminal Services Agreement ("TSA")
 - Bilateral agreement between the owner of the LNG terminal and the capacity holder.
 - TSA provisions concern customer capacity, tanker scheduling, and Gas/LNG deliveries.
- Operational Coordination Agreements ("OCAs")
 - Multilateral agreement among capacity holders and terminal operator.
 - Establishes rights and obligations with respect to the capacity of the LNG terminal.
- Other arrangements (e.g., Pooling Agreements)

LNG Regulatory Regime

Regulatory Regime

Regulatory Regime Overview

- Satisfying regulatory requirements for a new terminal may require significant time and resources.
- In the United States, Section 3 of the Natural Gas Act ("NGA") governs construction of export facilities and export of LNG.
 - Primary regulatory authority under NGA:
 - FERC: LNG facility siting authority.
 - Department of Energy ("DOE"): Approval for exports of the commodity.
- Pipelines governed by Section 7 of the NGA.
 - FERC: Regulation of pipelines.

Regulatory Regime

DOE Export Authorization

- DOE required to authorize the export unless it finds the proposed exportation "will not be consistent with the public interest."
- Exports to a country that has entered into a Free Trade Agreement ("FTA") with the United States deemed to be within the public interest.
- Presently, only one license granted by DOE for LNG export to non-FTA countries.
 - Granted to Cheniere Energy.
 - Eight (8) applications pending for non-FTA export licenses.

Regulatory Regime

Policy Issue - DOE Moratorium and Market Studies

- Since Cheniere's authorization, DOE issued moratorium on export authorizations pending examination of "impact on consumption, the economy, gross domestic product and balance of trade" of domestic LNG.
- DOE commissioned <u>two</u> studies to solidify its policy position before it authorizes any further export projects:
 - Study 1: Assessed natural gas price effects on end-user prices. Released January 2012.
 - Study 2: Assess the broad economic effects of increased exports. Release expected after the November 2012 election.

Final Remarks

Final Remarks

- Abundant LNG Supply and Relatively Low Prices Create
 Opportunities for North American LNG
- LNG Export Project Checklist
 - Whether investing in a new terminal, purchasing capacity, or purchasing LNG: carefully consider your risk/reward posture, and that of your partners.
 - Make sure the appropriate structure is selected from the beginning; the need to change later can increase costs, prevent financing and delay the project.
 - Align contract terms to reflect structure, comply with licenses, and promote project commercial and financial success.

Final Remarks

Presented By:

Steven R. Miles
Head of LNG Practice
Baker Botts L.L.P.
1299 Pennsylvania Ave., NW
Washington, D.C. 20004-2400
+1 202.639.7951
steven.miles@bakerbotts.com