

25th world gas conference

"Gas: Sustaining Future Global Growth"

Field experience with a novel pipe protection and monitoring system for large offshore pipeline construction projects

By: Michael Magerstädt, Gunther Blitz, Carlos E. Sabido

> Date: 6. June 2012 Venue: Kuala Lumpur

Patron

Host

Host Sponsor

Contents

- NordStream: Logistics and construction of a very long subsea gas pipeline
- Requirements for a pipe protection system
- A new concept for pipe protection
- The pipe protection system
- Experience to date

1. NordStream: Logistics and construction

- length of 2x 1'220 km
- subsea natural gas pipeline
- → Unique challenges beyond those encountered with onshore projects or shorter offshore pipelines.

- for the excellent design and handling of these challenges, the NordStream logistics team received the German Logistics Award ("Deutscher Logistikpreis").
- to allow pipe storage at large outdoor yards over 2+ years, a pipe protection system was needed.
- the system had to provide physical protection as well as security guarding / alerting in or near real-time.

Requirements:

- 209'000 concrete pipe joints of 48" diameter
- pipe manufacturing commenced 2 years before concrete coating was started up

- → for load-out, the pipe joints need to
- 1. Clean on the inside, free of dirt, excessive amounts of water, animals, etc.;
- 2. Free of corrosion on the cutbacks (uncoated areas) at both pipe ends;
- 3. Free of defects caused by mechanical damage (or from fire) during storage;
- 4. Individually marked and identifiable close to real-tim
 - → NEEDED: A "NO SURPRISE SOLUTION"!

3. A new concept for pipe protection

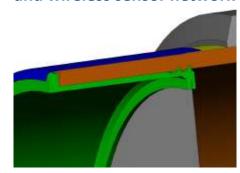
- Pipes needed to be clean and defect-free at load-out ("no surprises").
- Load-out cycle time very high (time available per pipe joint very short).

• Alternatives:

1. area protection concept

necessary

fencing and
safe-guarding
corrosion protection
of pipe ends
full cleaning of pipes
prior to load-out

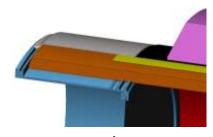

2. final check-out system

necessary

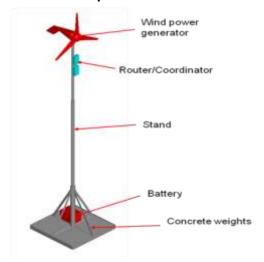
non destructive
internal surface test
corrosion protection
of pipe ends
full cleaning of pipes
prior to load-out

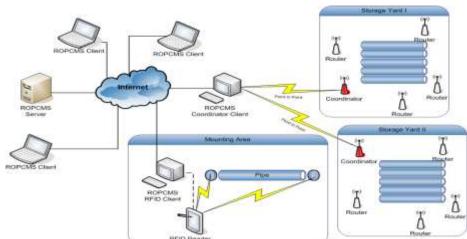
3. pipe protection with end caps, RFID chips, and wireless sensor network

APPROVED as:
"all in one" solution



4. The pipe protection system


Inner Cap with membrane


Inner Cap / Outer Cap assembly with zip lock

Inner Cap / Outer Cap assembly with spreader bar

router / receiver

ROPCMS control system

- The system has proven its viablity through three very cold and rough winters.
- Re-use of the pipe caps on the second NordStream string was completed successfully and all pipe caps have now been removed after pipe laying was finished.
- All mechanical and electronic systems have fulfilled their functions:
 - automated mounting and demounting
 - E-boxes
 - transceivers
 - control center
- Alarms have reliably been raised in the respective situations
- RoPlasthan high performance elastomers have provided sturdy internal pipe protection as well as highly efficient protection of inner and outer pipe cutbacks.

→ Cost savings for the operator. -->Who can afford NOT to use this system? <--

Field experience with a novel pipe protection and monitoring system for large offshore pipeline construction projects

Thank you for your attention!

The authors like to thank NordStream AG, Zug for contributions and photos contained in this presentation.