

"Gas: Sustaining Future Global Growth"

MISREADING OF CONVENTIONAL DIAPHRAGM DOMESTIC GAS METER

Field study in The Netherlands

By: René Hermkens, Kiwa Technology

Date: June 6 2012

Venue: room 302/3

Patron

Host

Host Sponsor

Contribution of gas metering to UFG

- Reason for the investigation
- Introduction into domestic gas metering in the Netherlands
- Misreading of diaphragm gas meters due to temperature, gas pressure and atmospheric pressure
 - field study initiated by the Dutch regulator (NMa)
- Conclusions drawn by the Dutch regulator

Reason for the investigation

- Publication on misreading of domestic gas meters in the Netherlands (Anmar Research laboratories)
- Conclusions of this study:
 - Readings of the gas meter is favourable to DSOs
 - Customers pay to much for their gas
- Dutch regulator (NMa) starts investigation in order to have a better insight into the raised topic

Main research question:

Is the 7-degree Celsius method used in the Netherlands fair for all end users?

Sub-question:

Is misreading of domestic diaphragm gas meters contributing to UFG?

- Dutch "meetvoorwaarde Gas-RNB":
 - Gas consumption is accounted for using volume metering under standard conditions
 - m³ (0°Celsius, 1013.25 mbar)

- Method used: 7 degree Celsius method
- Measurement of gas under the following conditions:

Gas temperature: 7°Celsius

Nominal pressure: 28 mbar

Atmospheric pressure: 1013.25 mbar

■ The meter reading in m³ using the 7°Celsius method is equal to the desired volume under standard condition

- Majority of the meter population: conventional diaphragm meter
- Preferred installation:
 - Inside the building
 - Close to the front door of the residence
 - Inside a special closet

Experimental set up

- Electronic meter reading device attached to the diaphragm meter
- Temperature sensors:
 - at home entry point of the service line
 - in the crawl space or cellar
 - at the exit of the gas meter
 - In the meter closet

- 26 locations, based on:
 - Building type (e.g. high rise, one family house)
 - Type of appliance used (on/off conventional, high efficiency boiler)

• Items that might influence the gas temperature (e.g. age of the building, family situation)

Raw results: temperature and consumption

Results of the individual gas meters

387.5

15664.1

26

Overall

285.4

287.0

Location	Qmeasured	Qnormal	Difference	Tgas,average
	(m3)	(m3)		(K)
1	561.8	555.3	-1.16%	283.4
2	359.4	351.5	-2.21%	286.3
3	850.8	827.9	-2.69%	287.7
4	284.2	271.4	-4.53%	292.8
5	805.2	785.8	-2.41%	286.9
6	113.6	111.5	-1.89%	285.5
7	673.8	667.8	-0.90%	282.7

380.2

15279.9

-1.87%

-2.45%

- Measuring period December to April
- 40% of the consumption measured during this period
- "Standard" year:
 the average day temperatures of the
 past three decades for every day

Location	Difference during measurement period	Difference scaled to "standard" year
1	-1.16%	-1.56%
2	-2.21%	-2.73%
3	-2.69%	-3.11%
4	-4.53%	-4.55%
5	-2.41%	-2.88%
6	-1.89%	-2.49%
7	-0.90%	-1.72%

26	-1.87%	-2.47%

Domestic building types In The Netherlands

- Meter closet outside
- Meter closet inside

29 %

number of gas meters app. 1,780,000

- One family house
 - Unheated meter closet
 - Heated meter closet

54 %

app. 3,320,000

Detached house

17 %

app. 1,050,000

Total

100 %

app. 6,150,000

Results: standard year and building type

House type	Typical measurement error in a "Standard" year compared to the seven- degree method (%)
High-rise building with meter closet outside	2 - 2.5
High-rise building with meter closet inside	4 - 4.5
One family house with unheated meter closet	1.5 - 3
One family house with heated closet	3 - 4.5
Detached house	1.5 - 3

Conclusions

- Temperature of the surrounding area of the gas meter is dominating the misreading of conventional diaphragm gas meters
 (gas meter = good heat exchanger)
- Measured individual errors in this study vary from 1.6 % to 4.6 % unfavourable for the end consumer (negative UFG)
- The total annual error for the Netherlands, based on the house stock, varies between 2.6 % and 3.9 %
- A 15° Celsius method would reduce the average annual error to almost zero percent

Conclusion by the Dutch regulator:

- The mismatch between the average actual delivered amount of gas and the real amount of gas is already compensated in the tariffs
- At the introduction of smart meter, a temperature compensation must be present

Thank you for your attention

Rene.Hermkens@kiwa.nl