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A new predictive methodology is introduced, based on a combined genetic algorithm (GA) and artificial neural 
network (ANN) methodologies for parameters estimation of a petroleum reservoir. Prediction of continuous 
petro-physical parameters is often time consuming and complicated because of geological variability such as 
facies changes due to sedimentary and structural changes. The petro-physical parameters, however, are usually 
difficult to measure due to reliability considerations, limitations insights on cost , inappropriate instrument 
maintenance and sensor failures, evaluated by crude diagrams of reservoir parameters valuably. The proposed 
algorithm combines the local searching ability of the gradient –based back-propagation (BP) strategy with the 
global searching ability of genetic algorithms. Genetic algorithms are used to decide the initial weights of the 
gradient decent methods so that all the initial weights can be searched intelligently. The genetic operators and 
parameters are carefully designed and set avoiding premature convergence and permutation problems. The 
developed soft sensors are  applied to predict the  parameters  of Marun reservoir located in Ahwaz, Iran, by 
utilizing the available geophysical well log data. The resulting outcomes demonstrate the promising capabilities of 
the proposed hybrid GA-NN methodology than the conventional back propagation (BP) NN algorithms. 
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1. INTRODUCTION 
 The accuracy of parameters estimation from the well log data is a crucial issue in the petroleum 
reservoirs. Over half a century, Electrical well logging is used to estimate of reservoirs properties. Crude 
logging diagrams are one of the important tools for evaluation of petro physical parameters and  
construction of three-dimensional models of hydrocarbon reservoirs. In the last few years, artificial 
intelligence has been involved in solving many problems in different fields of science. Many authors 
have dealt with the application of neural networks in solving fundamental problems in geophysical and 
petroleum engineering like Fu (1994), Haykin (1994), Mohaghegh et al.(1994, 1995) and Wiener 
(1995). Previous investigations (Wong et al, 2000) have indicated that artificial neural network can 
predict formation permeability even in highly heterogeneous reservoirs using geophysical well log data 
with good accuracy. The characterization and prediction of reservoir properties is an important 
application of ANNs in the oil industry. The input data to the prediction problem are usually processed 
and interpreted log data and/or a set of attributes derived from the original data set. Historically, many 
hydrocarbon indicators have been proposed to make such predictions.   Conventional gradient-based 
techniques are prone to getting into local optimum and convergence is slow. To overcome these 
drawbacks, this study attempts to combine GA (genetic algorithm), avoiding local minima and achieving 



global convergence quickly and correctly by searching in several regions simultaneously.   There are 
two main aspects to apply GA into ANN (Whitfield et al., 1986), as follows: one is to optimize the 
weights of the network, and the other is to optimize the topological structure of the network. The former 
will be discussed in this paper. The learning process of network is considered as the dynamic process for 
continuous optimization of the weights and thresholds. GA is an optimization and search technique 
based on the principles of genetics and natural selection. GA has remarkable abilities which include 
being able to solve non- smooth, non-continuous, non-differentiable fitness functions, to escape the local 
optima and acquire a global optimal solution. 
   GAs are found to be quite useful and efficient when the exploration space of the ANN is extensive. 
The researches by Van Rooij et al. (1996) and Vonk et al. (1997) have proposed using evolutionary 
computations, such as GAs in the field of ANNs to generate both the ANN architecture and its weights. 
Those (Miller et al., 1989; Marshall and Harrison, 1991; Bornholdt and Graudenz, 1992) who supported 
the proposal were in favour of optimizing the connection weights and the architecture of ANNs using 
GAs. In addition, the researches on permeability estimation from well logs by Huanga et al. (2001), and 
Chena and Lina (2006) showed that it is highly effective to apply integrated GAs to ANNs in 
permeability prediction. However, these works did not cover the optimization of ANN parameters using 
GAs. Saemi et al. (2007) developed a methodology for designing of the neural network architecture 
using genetic algorithm and showed that the neural network model incorporating a GA was able to 
sufficiently estimate the permeability reservoir with high correlation coefficient. 
The outline of this paper is as follows. First, in Section 2, we introduce the multilayer feed-forward 
neural network model. The genetic algorithm and methodology to hybrid real coded GA with a back-
propagation algorithm for neural network training is presented in Section 3. Finally, the developed 
approach will be tested on a capture data from a well of Marun field. 
 
                                                           
2. NEURAL NETWORK 
 
Neural networks can address some important problems which conventional computing has been unable 
to solve.  The idea of artificial neural networks is to input a number of parameters related to each other 
by certain features and try to use these features to predict another one or two output properties. To 
develop a neural network model, two groups of data are very important. The first is the training group, 
which contains all the input parameters, while the other is the application group, which will be used in 
the final prediction. It provides non-linear mapping between inputs and outputs. For this purpose, each 
input is multiplied by a weight, the inputs are summed and this quantity is operated on by the transfer 
function of the neuron to generate the output. Also, it has the inherent capability to deal with fuzzy 
information, whose functional relations are not clear (Mandal et al., 2007). Here, the viability of 
Artificial Neural Network (ANN) algorithms will be demonstrated in estimating oil field reservoir 
parameters. There are a number of algorithms available for the above purpose but the most widely used 
is the back propagation (BP) algorithm (Masters, 1990). Training a network by gradient descent, feeding 
the errors backwards through the network, is called back propagation. For illustration purposes, consider 
a ANN with one hidden layer Fig 1. In BP algorithm, the error is subsequently backward propagated 
through the network to adjust the weights of the connections and threshold, minimizing the following 
sum of the mean squared error (MSE) in the output layer, 
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the fitness values (F) which would lead to the minimization of the total mean squared error (U) from Eq. 
(1). This makes the ideal prediction results of the ANN be obtained. As seen in Eq. (1), the minimizing 
process of U value is the adjusting and optimizing process of weights and thresholds of the ANN. 
Therefore, the GA is used to optimize the weights and thresholds of the ANN. It is the weights 
optimization that is addressed in the current work. 
 
3.1. Weight connections optimization using hybrid GA-ANN  
 
The ANN learning process consists of two stages: firstly employing GA to search for optimal or 
approximate optimal connection weights and thresholds for the network, then using the back-
propagation learning rule and training algorithm to adjust the final weights. The operations are as 
follows: 
 The ANN weights and thresholds are initialized as genes of chromosome, and then the global optimum 
is searched through selection, crossover and mutation operators of genetic algorithm. This procedure is 
completed by applying a BP algorithm on the GA established initial connection weights and thresholds. 
 
 
4.  CASE STUDY  
 
Maroon field, representing an asymmetric anticline and located at the southeast of Ahvaz, Iran, is taken 
as a real case study. Production from this field is done on Asmari and Bangestan reservoirs, and the 
study is focused on the Asmari  formation. Fig 2 shows the position of Marun field in Dezful 
Embayment. Asmari reservoir in the Maroon field containing almost 70% lime and dolomite and 30% 
sediment. The proposed approach is developed to construct a robust model that could predict the 
reservoir parameters with only well log data for wells. Eight different parameters of a reservoir are 
considered as the original parameters. These parameters, capturing from logging tools, are consisted of, 
depth in a well (DEPTH), that is the measurement for any point in the well, condensate-to-natural gas 
ratio (CGR) , sonic log(DT), neutron log(NPHI), photoelectric effect (PEF), resistivity log, density 
log(RHOB) and  spectral gamma-ray (SGR). In this paper, the best ANN architecture with 10 hidden 
neurons has been chosen (7 input units, 5 hidden neurons, 1 output neuron). The developed hybrid GA-
NN model trained with 5 hidden neurons in the hidden and sigmoid and linear activation functions in 
hidden and output neurons, respectively.  Rock porosity can be obtained from sonic log, density log, or 
neutron log. 
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Fig. 2.  Marun field
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Fig. 3.  Reservoir DEPTH  estimation  by  NN and GA-NN 

 
  

 
The simulation performance of the GA–NN model was evaluated on the basis of efficiency coefficient   
(Nash & Sutcliffe, 1970). The corresponding statistical efficiency coefficients (R) have been 
summarized from the algorithms in Table 2. Roughly speaking, R value greater than 0.9 indicates a very 
satisfactory model performance, while R value in the range 0.8– 0.9 signifies a good performance and 
value less than 0.8 indicate an unsatisfactory model performance (Coulibaly et.al, 2005). 
 
Table 2. 
The efficiency coefficients (R) of the two implemented algorithms for estimation of DEPTH  

 
                   Neural network algorithm                 GA & Neural Network 

0.98429 0.99177 
 

The parameters of the MSE = 4.8180e-005 and 
2R = 0.99177 for GA-NN algorithm in contrast to MSE= 

8.3083e-005 and 
2R = 0.98429 for ANN, suggest a very good performance of GA-NN algorithm to 

estimation of parameters. (Fig. 3-4). 
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the proposed GA-NN  algorithm could efficiently estimate the reservoir parameters better than the common back-
propagation  algorithms. 
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