

Gas pipeline risk assessment by web based decision support system

Authors: <u>Andrzej DIETRICH</u> Jakub BADOWSKI Affiliation: Oil & Gas Institute, Krakow, Poland

Keywords: Gas pipeline, risk assessment, computer support systems, web applications.

Introduction

Gas pipelines are recognized as the safest mode of transportation. However sometimes they do fail often with severe consequences. Therefore there is a risk of pipeline failure which can not be totally eliminated.

An integral part of any Pipeline Integrity Management System (PIMS) is the risk assessment process. In order to maintain gas pipeline integrity we must know and understand the risk factor. This includes the analysis of the probability of failure and the potential consequences. There are two approaches to estimate the risk, the quantitative and the qualitative. The quantitative methods involve historical accidents data base or computer simulation. The qualitative methods are based on the expert's opinions and can gather the local experiences of the pipeline operator. In this paper the model based on the qualitative risk indexing method is presented.

Two groups of parameters are considered. In the first group are parameters which have the influence on the probability of failure. The second group is constituted from the parameters which have influence on the potential consequences.

Having the list of these parameters the relative importance of each parameter is discussed among the group of experts. Once consensus is reached the model of risk estimation of pipeline failure is created. In the next step the risk categories criteria are formulated.

The risk criteria for five risk categories were formulated.

The model and the risk categories were implemented on the web based decision support system. The pilot tests of the system were performed and the results are presented.

Managing the pipeline risk

In order to manage the pipeline risk Operators need to identify and estimate it. They would like to know what the risk of pipeline failure is. Pipeline Operators need to have in place an easy use and understandable computer tool which helps them to establish a risk priority for pipeline segments of concern.

There is also economical aspect of such approach, because the funds, coming from always tight budget will be spend on these pipelines which really need it and are the potential source of hazard.

The elaborated model of risk assessment together with risk acceptance criteria were implemented on the web based support system called **S**ystem **O**ceny **R**yzyka **E**ksploatacyjnego **G**azociagu (**SOREG**[®]).

Each segment of gas pipeline is characterized, in terms of posed risk by total risk index. Risk R is defined as the product of two variables P and Q:

$$R = P \cdot Q$$
 (1)

Where P is the probability of failure and Q is the consequence if the risk is materialized.

The method of risk assessment

There are two approaches to risk assessment. One is qualitative and one is quantitative. In the first one the risk level is characterized without quantifying it. In the second approach the risk level is calculated on quantified estimates failure probability and consequences.

Quantitative approach is more sophisticated and detailed. It involves the incident data base to perform statistical calculation or uses physical models to estimate risk by analytical methods.

The qualitative approach is simple and relative. One of the qualitative methods is indexing (Muhlbauer 1996). In this paper the qualitative risk indexing method is presented.

Two groups of gas pipelines and surroundings parameters are considered. In the first group are parameters which have the influence on the probability of failure. The second group is constituted from the parameters which have influence on the potential consequences. Having the list of these parameters the relative importance of each parameter is discussed among the group of experts. Once consensus is reached the model of risk estimation of pipeline failure is created. In the next step the risk acceptance criteria are formulated.

The model is designed to help pipeline operators identify, analyze and mitigate the risk of pipeline failures. The model construction was done in two stages process. In the first stage the parameters which have an impact on the probability of pipeline failure were chosen. The causes of failure as well as theirs occurrence frequency were analyzed. These parameters contain information and data from five thematic groups:

- Quality systems applied
- Physical characteristic of the gas pipeline
- Operational and organizational factors
- Technical condition of the gas pipeline
- Corrosion control

In the second stage the parameters which have an impact on the potential consequences of failure were chosen. The potential consequences of failure depend on the localization of the pipeline, population density in vicinity of pipeline, crossings and interferences. The applied mitigation methods of pipeline failure consequences were taken into consideration.

There are 22 parameters analyzed in the first stage and 11 in the second stage. Then the adequate weights were assigned to each parameter throughout the expert's judgment. The relationships among the chosen parameters were analyzed and took into account in the weighting process. The point system was created and accepted by all parties involve in model construction. The consensus was reached.

Risk categories were defined by the number's intervals. Each analyzed segment of gas pipeline is characterized by the relative Total Risk Index (TRI). The value of TRI will decide in which risk category the considered pipeline segment falls. Moreover for each risk category some recommendations are suggested (see Table 1).

In some way, risk categories criteria define the operator's safety policy. Safety is strictly connected with the cost. There is no possibility to eliminate risk completely. There is a risk level which can be acceptable. Risk level which can not be tolerated must be reduced or transferred to others, e.g. insurance company.

The next step was an implementation of the model and risk criteria into computer system which could serve gas pipeline Operator as a computer tool. This easy understandable computer tool can help them to make rational decisions in operating and maintaining gas pipelines. Therefore the model and risk acceptance criteria were implemented on the web based support system called SOREG[®].

Table 1: Risk categories and recommendations

Risk	Recommendations
Very high	Immediately replacement or withdrawal from operation
High	Necessarily include in the repair & modernization plan
Moderate	Additional diagnostics as well as modernization or repair possibility consideration
Small	Standard operational monitoring as well as additional inspection of the chosen segments of pipeline
Very small	Standard operational monitoring

Computer implementation

The SOREG[®] was designed as web based decision support system. The PHP language, Java scripts as well as MySQL Data Base were used to create the SOREG[®] (Welling L. and Thomson L. 2005).

There are two kinds of users of the SOREG[®]. The first one is an Administrator and the second is Operator. There is only one Administrator. There could be more than one Operator. They both work with the system throughout their own panels. The Administrator has a power over the model and the risk categories and also creates the Operators accounts in the system. It means that Administrator has possibility of changing the model and can set up the new risk categories. The Operators logins and the passwords are assigned by Administrator. There are two kinds of Operators.

One is called Active Operator (AO) who can define the gas pipeline in the SOREG[®] system, do evaluation, print the reports and also can review and edit the results. The second one is called Passive Operator (PO) who may only review the results. However PO does not have rights to edit them and can not define a new gas pipeline in the system. PO does not have authorization to make his own evaluation of the gas pipeline.

There are two modes of working with the system. One mode is referring to the managing of the gas pipelines and the other deals with the managing of the evaluations. All pipeline evaluation results are stored in the data base.

Work with the SOREG[®] system involves the following four steps:

- 1. In the first step the object of the evaluation must be defined. It means that the gas pipeline, if necessary is breaking into segments. The amount of segments and their size depend upon the essential parameters values changes.
- 2. Input the values of each parameter by typing them or import from the others data bases.
- 3. The system carries out the risk assessment for the pipeline segment being analyzed.
- 4. Automatically two kinds of reports (tabular and graphical) are created, which can be saved, printed or displayed.

As a result, each segment of gas pipeline is characterized, in terms of posed risk by the relative Total Risk Index.

The general idea of the SOREG[®] system is presented on Figure 1.

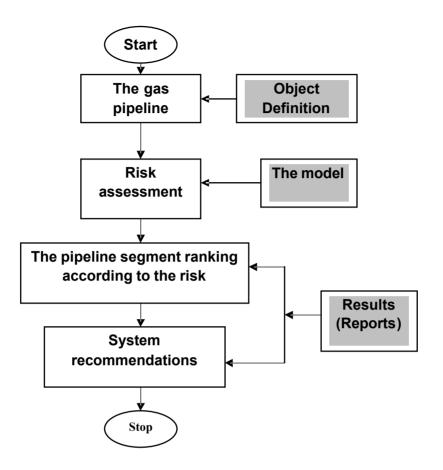


Figure 1. The general idea of the SOREG[®] system

Additionally, if necessary there is an option to carry out "what if" analysis. By changing the value of one or more parameters one can create the new scenario which will show the influence of the change in parameters on the results.

The pilot tests

The pilot tests were conducted by three Polish gas pipeline Operators. The gas pipelines being evaluated were chosen carefully trying to cover many different situations. The technical condition of the gas pipelines being analyzed was known very well to the Operators. In most of the cases the results obtained from the SOREG[®] confirmed the knowledge of the Operators about the analyzed gas pipelines. Some small changes were made in descriptions of the parameters, assigned points and definition of risk categories. They were also some remarks concerning the functionalities of the system.

The pilot tests of SOREG[®] system on 19-th real gas pipelines are promising and showed that such approach can help operators to prioritize which pipeline segment should be first repaired or needs inspection or additional diagnostics. In spite of promising results of SOREG[®] system pilot tests more work is needed. The schedule of new future tests on real gas pipelines is elaborated. This system can be integrated with other information systems working at Operator site, e.g. **G**eographic Information **S**ystem (**GIS**). When the system is implemented then the "good practices" of the specific Operator can be incorporate into the system. The system can also be easy modified when knowledge and experience are expanded.

Summary

The risk assessment not necessarily must be a complicated process. This paper presents the easy use approach to cope with pipeline risk assessment. The risk involved in operation of gas pipelines can be estimated and when known be manageable. The presented point model and its software implementation SOREG[®] can help gas pipeline operators to make the rational decisions in their work. The gas pipeline in operation can be prioritized according to the Total Risk Index. This ranking list can be used in the elaboration process of repair and modernization plans. It can save money. The funds coming from always limited budget will be spending on these segments of the gas pipeline which need it more than others. By using this system the Operator can compare two segments of the gas pipeline based on the same criteria and on the common method.

The system integrates and analyses data coming from different sources. Operator can identify the potential risk and if necessary can take actions which prevent the pipeline failure. Having such tool in place operator can be active in managing risk. In decision making process the results obtained from SOREG[®] will be integrated with other sources of information. By creating the different scenarios and simulate some action (i.e. reparation of the deteriorated coating) gas pipeline Operator can easy see the result of his action on the risk. With this system, High-Consequence Areas (HCA) can be identified. Then remediation and mitigation actions can be chosen and taken.

Acknowledgments

This research has been funded by Polish Minister of Science and Higher Education (MNiSW) within the science funds for years 2007-2009. INI_TECH_1 R&D Project No. 13322

References

Muhlbauer W. Kent: *"Pipeline Risk Management Manual".* Gulf Publishing Company. 1966. Second Edition.

Welling L. Thomson L. "*PHP and MySQL Web Development*".2005. Polish language edition published by Helion.