

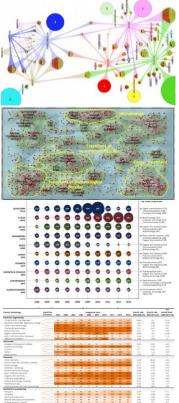
Racademy academy

26th World Gas Conference

1 – 5 June 2015, Paris, France

Assess Global Gas R&D Outlook with Patent Analytics

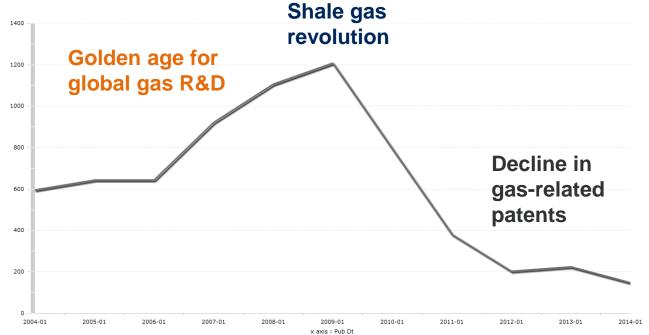
Kristin Wu Intellectual Property Academy of Singapore



Patent Analytics (Landscape).

- Transform bulk raw patent data into useful information for business intelligence;
- The information generated can be used to advance business competitiveness.

Examples of information that can be obtained by patent landscaping:


- Identify white spaces of potential business opportunities;
- Discover players, big or small, in specific fields and find potential collaborators;
- Get an overview of the trends of all technological sectors and identify emerging technological areas.

Background.

Number of Gas-related Patents Published by the Major Five IP Offices from 2004 to 2014

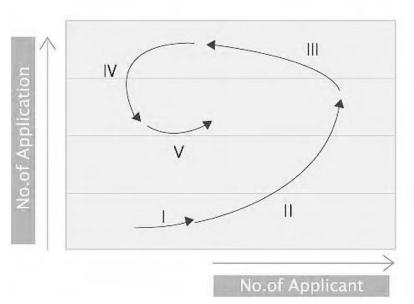
Aim.

Comprehensive Quantitative Assessment

• Comprehensive quantitative assessment of the global gas R&D landscape in the past decade (2004-2014) using patent analytics.

Characterize Stages of Development

Characterize the stages of development of the key technologies along the entire gas chain – exploration and production, storage, transmission, distribution, utilization – so as to access the R&D potential of each segment in the near future.


Needs and Challenges of Global Gas R&D

• This potential is then compared against the current industry demands and expenditure in each segment, in order to unveil the needs and challenges of global gas R&D in the next decade.

Methods.

General Model for Patterns in Patenting Activity

Re-discovery of the technology usefulness, returning to increase in application & applicant

Introduction of alternative technology, Decrease in application and applicant

Stable technology renovation, Stagnant or decrease in application and applicant

Rapid growth of R&D, Rapid growth in applicatio and applicant

Introdction of technology, Increase in application and applicant

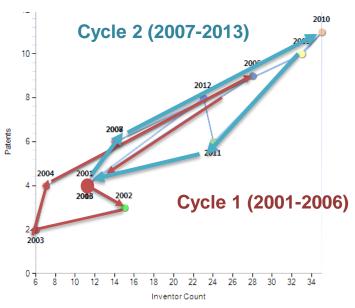
Data.

The data used in this study was extracted from the patent databases of the major five IP offices as well as that of the International Bureau of the World Intellectual **Property Office (WIPO)**

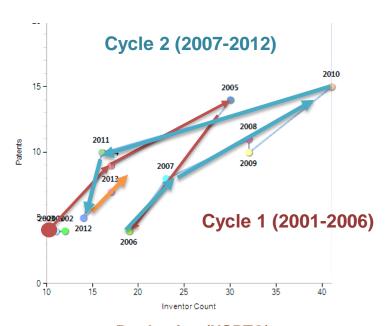
Database	Date of	Data	No. of Gas-related
Database	publication	coverage	Patents
European Patent Office (EPO)	01/09/2004 —	Full text	517
Ediopean Faterit Office (EFO)	01/09/2004		
International Bureau of the World Intellectual Property Office (WIPO)	01/09/2004 -	Full text	1,559
International Bureau of the World Intellectual Property Office (WIPO)	01/09/2004		
United States Potent and Trademark Office (USDTO)	01/09/2004 -	Full text	1,115
United States Patent and Trademark Office (USPTO)	01/09/2004	ruii text	
Janon Ratant Office (IDO)	01/09/2004 - Abstract	443	
Japan Patent Office (JPO)	01/09/2004	Abstract	443
Koroan Intellectual Property Office (KIDO)	01/09/2004 -	Abstract	594
Korean Intellectual Property Office (KIPO)	01/09/2004		
Otata Intellectual Duranti Office of the Decade's Demoklic of Okine (OIDO)	01/09/2004 -	Abatraat	4.047
State Intellectual Property Office of the People's Republic of China (SIPO)	01/09/2004	Abstract	1,217

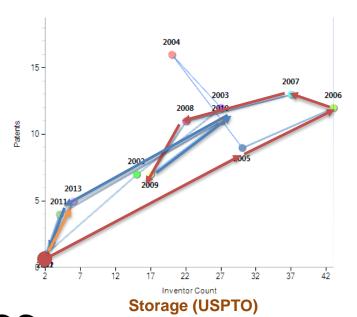
Classification of Technologies.

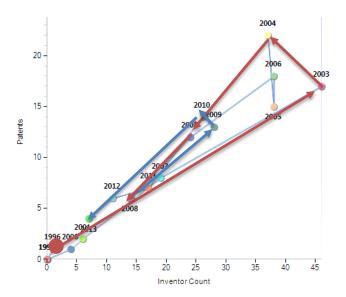
For the purposes of this study, natural gas-related patents were classified according to their relevance to each segment of the gas chain. The list is non-exhaustive.


Segment	Examples of Technologies Included	
Exploration	Seismic imaging, geological survey	
Production	Drilling, hydraulic stimulation, well productivity, subsea systems	
Storage	Underground gas storage	
Transmission	Pipelines, networks, compression, turbo machineries, inspection, emission reduction	
Distribution	Power to gas, gas chromatography, gas grids	
Utilization	Cogeneration, carbon footprint, natural gas vehicles, compressed natural gas, biomethane	

Results (similarity across all the IP offices studied).

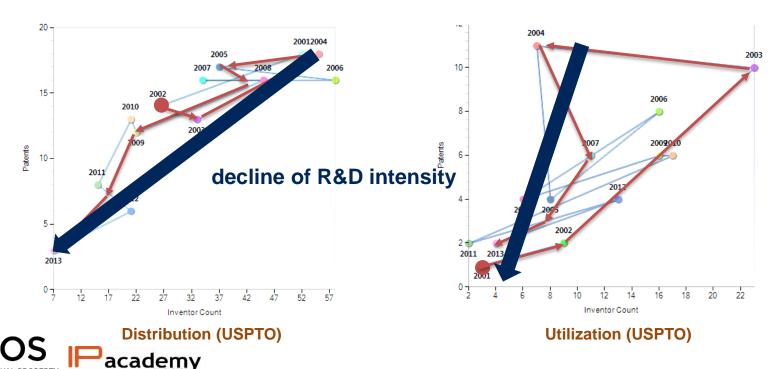

Disruptive growth




OFFICE OF SINGAPORE

Results (similarity across all the IP offices studied).

Stable phrase of technology renovation – 'incremental advances'


Transmission (USPTO)

OFFICE OF SINGAPORE

Results (similarity across all the IP offices studied).

Introduction of alternative technology

OFFICE OF SINGAPORE

R&D Needs & Challenges.

Disruptive growth

Segment	R&D Needs	R&D Challenges
Exploration	Idea-to-profit acceleration	 Ongoing demands for new
	 Open innovation 	breakthroughs
	 R&D gaps in water 	
Production	technologies, fracturing media,	 High costs to fully commit
	geo-characterization,	to and complete ever larger
	environmental assessment,	R&D projects
	and down-hole materials and	
	sensors	

R&D Needs & Challenges.

Incremental advances

Segment	R&D Needs	R&D Challenges	
Storage	Move from 'incremental advances' to new innovative or game-changing technologies	Lack of funding and priority	
Transmission	 Joint innovation with closely related industries 	Convergence of value chains	

R&D Needs & Challenges.

Declined interest

Segment	R&D Needs	R&D Challenges
Distribution	Collaborative funding	Imbalance in industry participation
Utilization	 Diversify the focus from 'effective use" to "innovative use" 	 Competing R&D interest in substituting industries

Conclusions.

- Polarizing R&D landscape across the gas chain;
- Short-term drivers for R&D in gas exploration and production are ever present; long-term drivers, including the overall economic and social value of the industry, should also get the attention they deserve;
- R&D for gas exploration and production could easily crowd out the
 resources for other segments of the gas chain. R&D in other segments –
 especially in gas transmission, distribution and utilization should therefore
 work even closer with associated industries in order to share resources,
 consolidate platforms, as well as to shorten their R&D lifecycles.

Contact.

THANK YOU.

Kristin Wu (Ms)

Programme Manager, IP Academy (Singapore)

DID: +65 6705 2351 Fax: +65 6221 8601

Email: Kristin_Wu@ipacademy.com.sg

Website: www.ipacademy.com.sg

Address: 51 Bras Basah Road, Manulife Center, #01-01, Singapore 189554

