

SMALL SCALE LNG: LNG CARRIERS

15th April 2013 Houston

Andy Alderson

Project Manager - Gas Projects LNG4T, Shell International Trading & Shipping Company Limited

DISCLAIMER STATEMENT

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation "Shell", "Shell group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. "Subsidiaries", "Shell subsidiaries" and "Shell companies" as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as "associated companies" or "associates" and companies in which Shell has significant influence but not control are referred to as "associated companies" or "associates" and companies in which Shell has joint controlled entities". In this presentation, associates and jointly controlled entities are also referred to as "equity-accounted investments". The term "Shell interest" is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as "anticipate", "believe", "could", "estimate", "expect", "intend", "may", "plan", "objectives", "outlook", "probably", "project", "will", "seek", "target", "risks", "goals", "should" and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for the Shell's products; (c) currency fluctuations; (d) drilling and production results; (e) reserve estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (i) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (1) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly gualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell's 20-F for the year ended December 31, 2011 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, April 15th 2013. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. The United States Securities and Exchange Commission (SEC) permits oil and gas companies, in their filings with the SEC, to disclose only proved reserves that a company has demonstrated by actual production or conclusive formation tests to be economically and legally producible under existing economic and operating conditions. We may have used certain terms in this presentation that SEC's guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

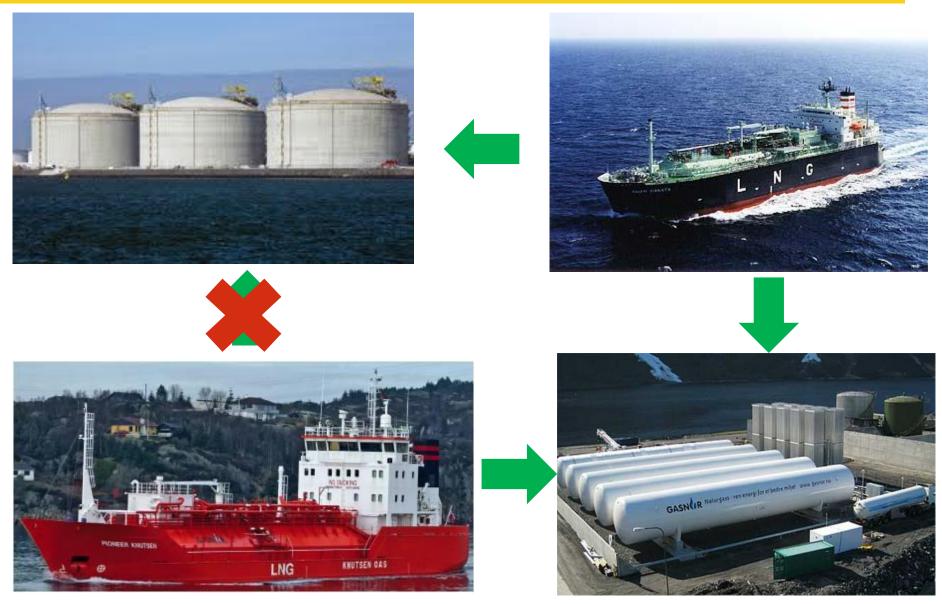
LNG VESSEL TYPES- BASICS

Heat In – Pressure 2bar Water Temperature 120°C Water Density 942kg/m3 Heat In – Steam Out (atmospheric pressure) Water Temperature 100°C Water Density 958kg/m3

Copyright of Shell International Trading & Shipping

LNG VESSEL TYPES

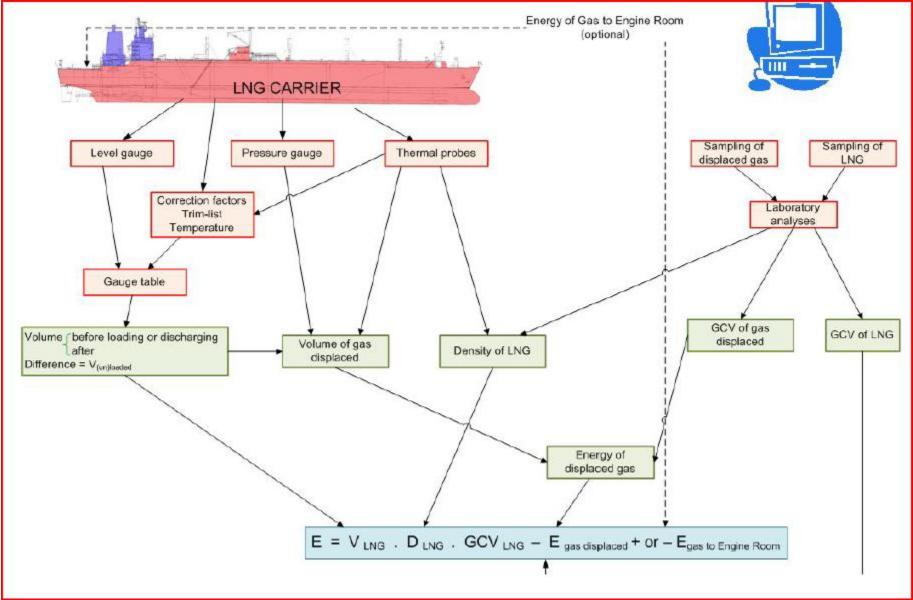
Heat In – Boil Off Out LNG Temperature -162°C Density 423kg/m³



Heat In – Boil Off Contained (max 9bar) LNG Temperature -126°C Density 363kg/m³

COMPATIBILITY WITH SHORE STORAGE TANKS

Copyright of Shell International Trading & Shipping


SMALL LNG CARRIERS : IN SERVICE

	M ³	Туре	Built	Trading	Trading in LNG	A/P
1	3,556	LNG	2011	Japan	Yes	Р
2	18,928	LNG	1993	Malaysia - Japan	Yes	А
3	18,800	LNG	1998	Malaysia - Japan	Yes	А
4	18,928	LNG	1997	Malaysia - Japan	Yes	А
5	12,000	LNG/LPG/Ethylene	2011	WW	No	Р
6	15,600	LNG Ice Class 1A	2012	NWE / Baltic	Under Con	Р
7	7,551	LNG/LPG/Ethylene	2009	NWE / Baltic	Yes, sometimes	Р
8	2,536	LNG	2008	Japan	Yes	Р
9	1,517	LNG	1988	Japan	Yes	Р
10	10,000	LNG/LPG/Ethylene	2011	WW	No	Р
11	10,000	LNG/LPG/Ethylene	2010	WW	No	Р
12	10,000	LNG/LPG/Ethylene	2010	WW	No	Р
13	10,000	LNG/LPG/Ethylene	2011	WW	No	Р
14	12,000	LNG/LPG/Ethylene	2011	WW	No	Р
15	12,000	LNG/LPG/Ethylene	2011	WW	No	Р
16	2,500	LNG	2005	Japan	Yes	Р
17	1,100	LNG	2003	Norway	Yes	Р
18	2,540	LNG	2003	Japan	Yes	Р
19	19,531	lng	2007	Malaysia - Russia - Japan	Yes	А
20	19,475	LNG	1996	Indonesia - Japan	Yes	А

SMALL LNG CARRIERS : DESIGNS/PLANNED

M3	Туре	Built	Trading	Trading in LNG ?	A/P
27,500	lng	2015	US/Norway		Р
12,000	leg				Р
12,000	leg				Р
800	LNG	late 2013	Germany	Yes	Р
2,000	lng	late 2013	Germany	Yes	Р
4,700	lng/leg				Р
6,500	lng/leg				Р
4,000	LNG	late 2013	Germany	Yes	Р
30,000	LNG	2015	WW		Р

CUSTODY TRANSFER

CUSTODY TRANSFER ISSUES

Although this LNG Custody Transfer Handbook may contain much useful information, it is not specifically intended to work out procedures for ship-to-ship LNG transfer, custody transfer for LNG carriers with type C cargo tanks (IGC Code) or overland LNG custody transfer operations involving LNG trucks or trains.

GIIGNL
NG CUSTODY TRANSFER
THIRD EDITION version 3.01
e sent att

SHIP SHORE COMPATABILTY

Category (A)	less than 59,999m ³
Category (B)	60,000m - 149,999m ³
Category (C)	over 150,000m ³

Ship Volume	H*	Liquid Lines	Vapour Lines
		Flange size	Flange size
Category (A)	2.5 metres	12″	. 12"
Category (B)	3.0 metres	16″	16″
Category (C)	3.5 metres	20″	20"

 H^* = minimum distance recommended between the manifold flange centres. The distance should not be exceeded by more than half a metre.

