Introduction	Empirical Model	Empirical Results	Conclusions	Q&A

Location and Capacity of Biofuel Mills in Brazil

Breno Pietracci

Università Ca'Foscari di Venezia PhD Candidate in Economics bpietracci@unive.it

IGU Committee Meeting (WOC 1 and PGC A) Rio de Janeiro, Brazil February, 20th, 2013

Introduction •	Empirical Model	Empirical Results	Conclusions 000	Q&A 0
Objectives				

 Investigate empirically location and capacity decision drivers for biofuel mills in Brazil using regional variables.

Where biofuel mills locate? Why?

- 2 How is their installed capacity decided?
- Build an understanding about the economic forces at work in the formation of these bioenergy producing regions, drawing upon the Brazilian experience with ethanol and biodiesel.

Introduction	Empirical Model	Empirical Results	Conclusions	Q&A
O	●○○		000	0
The Sample				

Consists of 306 micro-regions in the Brazilian Center-West, Southeast and South regions. Similar to NUTS 3 in Europe or Counties in the US.

Introduction	Empirical Model	Empirical Results	Conclusions	Q&A
O	○●○		000	0
Depender	nt Variables			

- Location \rightarrow Binary variable \rightarrow Probit Regression.
 - Existing biofuel mills in 2011.

 $BM_{i,b} = \begin{cases} 1 & \text{if } Micro-region i hosts at least one biofuel b mill.} \\ 0 & \text{if } Micro-region i does not host a biofuel b mill.} \end{cases}$

- Capacity \rightarrow Censored variable \rightarrow Tobit Regression.
 - \blacktriangleright Ethanol \rightarrow Number of workers in each micro-region in Dec/2010.
 - Biodiesel $\rightarrow m^3/year$ in each micro-region.

$$C_{i,b} = \begin{cases} C_{i,b}^* & \text{if} \quad C_{i,b}^* > 0 \\ 0 & \text{if} \quad C_{i,b}^* \le 0 \end{cases}$$

Explanatory Variables and Expected Contributions

It is assumed that variables that contribute positively to locational decisions should exert the same influence on installed capacity.

Variable	Group	Ethanol	Biodiesel
Distance to Santos Port Feedstock Quantity Feedstock Price Area Distance to Soy Crushing Mill Raw Vegetable Oil Employment	S S S S S	- + - n/a n/a	+ + + + +
Highway Density Railway Density Power Transmission Grid Density River Density	 	+ + + +	+ + n/a n/a
State Fossil Fuel Substitutes Price Automobiles Trucks plus Buses Distance to Ethanol Storage Terminal Distance to Fuel Terminal Cattle Poultry Hogs	$egin{array}{c} D_1 \ D_1 \ D_1 \ D_1 \ D_1 \ D_1 \ D_2 \ D_2 \ D_2 \ D_2 \ D_2 \end{array}$	+ + n/a - + n/a n/a	+ n/a + n/a - + + +

Note: n/a stands for not applied.

Model accuracy of 92.16 % \rightarrow misclassifies 24 micro-regions.

Introduction	Empirical Model	Empirical Results	Conclusions	Q&A
O		o●oooooooooo	000	0
Summary fo	r Ethanol	Regressions		

- Location \rightarrow Probit.
 - Away from Santos Port (not expected, but with non-linearities).
 - Abundant sugarcane supply.
 - Low sugarcane price.
 - Small Areas \rightarrow correlation of 0.68 with distance from Port.
 - Low transmission grid density (not expected, untapped potential for bioelectricity).
 - High River Density.
 - High Number of Automobiles.
 - Near Ethanol Storage Terminals.
 - ▶ Variables (S), (I) and (D), (D₁) are jointly significant.
- ► Capacity → Tobit.
 - ▶ Cattle \rightarrow indication of land availability to increase sugarcane production \rightarrow Part of dLUC.
 - ► Variables (S) and (D), (D_1) and " (D_2) " are jointly significant.

Locational incentives through two federal tax exemptions.

- ► For castor beans and oil palm produced in the North and Northeast regions, from any producer, tax exemption of 30.5 %.
- ► Social Fuel Stamp → Minimum purchase requirements from small farmers that vary in each region.
 - Full tax exemption if feedstocks are castor beans or oil palm in the North and Northeast regions.
 - Exemption of 67.9 % for any feedstock, in any region.

Huge excess capacity for biodiesel caused by over-entry. Installed capacity (5.8 billion liters/year) is more than twice of that required to meet the current 5% blending mandate (2.4 billions liters) in 2010.

Model accuracy of 89.22 % \rightarrow misclassifies 35 micro-regions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction O	Empirical Model	Empirical Results	Conclusions 000	Q&A 0
Initial Mover	s Disadvantage			

Rare case of excess capacity with continued entry \rightarrow Mislocation.

- ▶ 18 micro-regions host both a biodiesel mill and a soy crushing mill.
- 22 micro-regions host biodiesel mills not coupled with a soy crushing mill.
- 27 micro-regions with unattended soy crushing mills which could potentially host biodiesel mills.

What caused mislocation?

- Infant industry with many uncertainties.
 - Economic attractiveness of feedstocks.
 - **②** Technological route, methanol vs. ethanol \rightarrow non-renewable vs. renewable.
- Federal locational incentives through tax exemptions to attract investments to poor regions of the country and use castor beans or palm oil as feedstocks from small farmers.

Introduction	Empirical Model	Empirical Results	Conclusions	Q&A
O	000		000	0
Technologica	I Route Choice	е		

- Biodiesel mills that opted for the ethylic route are expected to be close to ethanol supply.
- Evidence that, proportionately, biodiesel mills located in the Southeast region have opted more for the ethanolysis or hybrid route than in other regions.

	Methanolosys	Ethanolosys	Flexible
Center-West	78%	0%	22%
Southeast	43%	21%	36%
South	78%	11%	11%

As the ethylic route can be adapted to the methylic route, the only cause of mislocation becomes again a problem of feedstock procurement cost.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Biodiesel Probit - Predicted Probabilities vs. All Mills

Model accuracy of 86.93 % \rightarrow misclassifies 40 micro-regions.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

0			000	0
Introduction	Empirical Model	Empirical Results	Conclusions	Q&A

• Location \rightarrow Probit.

- Abundant soybean supply.
- Near soybean crushing mills.
- ▶ High number of workers in raw vegetable oil production.
 - Proxy for the capacity of soybean crushing mills.
- High railway density.
- Only supply (S) variables are jointly significant.
- ► Capacity → Tobit.
 - ► Excess capacity → unlikely that in the short and medium term, other oil crop will be employed as feedstock in large scale.

Only supply (S) variables are jointly significant.

Bio-Refineries - Probit vs. Probit

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Introduction	Empirical Model	Empirical Results	Conclusions	Q&A
O		○○○○○○○○●	000	0
Bio-Refinerie	es II			

> 21 micro-regions already host both types of biofuel mills.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction O	Empirical Model	Empirical Results	Conclusions ●oo	Q&A 0
Conclusions				

- ► Almost the same set of statistically significant variables drives location and capacity decisions → their shocks are transmitted through two channels.
- Categories of jointly statistically significant variables reflect the way competition with fossil fuels occur.
 - Ethanol \rightarrow Supply and Demand \rightarrow Endogenous market size.
 - Biodiesel \rightarrow Supply \rightarrow Exogenous market size.
- Supply variables are always jointly significant, raw materials in particular → Access to agricultural feedstock in large scales.
- Biofuel production is linked to the structure, dynamics and bottlenecks of the agricultural sector which provides its feedstock.
 - This link is forged by technological factors and cost structure derived from bioenergy production function.

Introduction	Empirical Model	Empirical Results	Conclusions	Q&A	
O	000		o●o	0	
Policy Implications					

- Improve efficiency, competitiveness, profitability and resilience in the agricultural sector (e.g. international trade negotiations, improving infrastructure, R&D).
- Ethanol
 - Ethanol Storage Terminals \rightarrow affect several micro-regions.
 - Untapped potential for bio-electricity due to past and current regulatory framework in the power sector.
- Biodiesel
 - Inefficient transport mix mainly based on road transportation, which is diesel intensive.
 - Do nothing \rightarrow continued entry and exit.
 - Increase blending mandate up to 10%.
 - ▶ B7 in 2013 and B10 in 2014.
 - Involve different mandates by state or region to account for regional idle capacity.
 - Export \rightarrow Unlikely as it costs more than petroleum diesel.

Speculating on Further Implications

- The most economically viable way to produce biofuels, or that has minimum subsidies requirements, is to start as a spin-off of an already existing, mature, at the technological frontier, competitive in international markets agro-industry.
- Examples
 - Ethanol from corn in the US and from sugarcane in Brazil.
 - Biodiesel from soybean in the US, Brazil and Argentina, from palm oil in Indonesia and Malaysia and from rapeseed in EU.
- This provides an explanation of how bioenergy can actually contribute to energy security.
- Existing agro-industrial complexes are also more likely and more experienced in influencing policies to their benefit.

0	000	00000000000	000	•		
Questions & Answers						

Muito Obrigado! Thank You!

Breno Pietracci bpietracci@unive.it

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・