

Possible topics to cover for WOC 1 during 2012-2015 triennium SG 1.1 & 1.2

IGU Status of reserves and exploration GDF SUCEZ

Main remaining reserves in E&P

- Brownfields
- Sour fields
- Stranded fields
- New exploration areas
- Unconventional sources (Shale gas, tight gas, CBM)
- New sources (Methane Hydrates, Low pressure)
- Associated gas?

Brownfields

Definition

 An oil or gas accumulation that has matured to a production plateau or even progressed to a stage of declining production.

Challenge

 To extend the economic producing life of the field using cost-effective, lowrisk technologies.

Technologies used

- Stimulation (acid)
- Refracturing
- Polymer injection
- Artificial lift
- Smart completion

- Assessment of reserves in Brownfields?
- Chapters on each technology?
- Economic and tax incentives?

Sour gas fields

Definition

• Gas fields that are acidic either alone or when associated with water. Main sour gases in E&P are H₂S (hydrogen sulfide), and CO_{2 (}carbon dioxide).

Challenge

- To produce and process these fluids, with the constraints on HSE and equipment
- CO2: transforms into carbonic acid with water. This acid causes corrosion of metal but also formation of calcium carbonate scale [CaCO₃] by reaction of bicarbonate [HCO₃-] and carbonate [CO₃-2] salts or ions with calcium.
- H2S: An extraordinarily poisonous gas, that is lethal and even harmful at low concentration. At low concentrations, H₂S has the odor of rotten eggs, but at higher and lethal concentrations, it is odorless. Awareness, detection and monitoring of H₂S is essential. In addition to its poisonous effect,H₂S causes corrosion cracking of metal and requires costly special production equipment such as stainless steel tubing

Technologies used

- Detection systems
- Corrosion control
- Scavengers
- Separation/processing techniques

- Assessment of reserves in Sour gas fields
- State of art of Current Challenges/ technologies

Stranded fields

Definition

- A stranded gas field is a field that has been discovered, but remains unusable for either physical or economic reasons. Generally, conventional means of transportation via pipeline is not practical or economical
- Some reports indicates that 80% of current 142 tcm discovered reserves are classified as stranded 20000 fields(tbc)

Challenge

- Remoteness from a market for natural gas, making construction of exports expensive.
- Saturation of local market
- Small gas fields, that are uneconomic to develop

Technologies used

- FLNG
- Compact GTL plants
- CNG transport
- Process progress (Subsea dehydration processing, allowing long pipelines)
- •

- Assessment of reserves in stranded gas fields?
- State of art of Current Challenges/ technologies
- Economic incentives and state regulations (small fields incentives....)

Associated gas

Definition

Associated gas is gas dissolved in oil, that is produced simultaneously with liquid.

Challenge

- Assessment of associated gas reserves
- Monetization of gas (export infrastructure, re-injection...)
- Recovery of gas after oil production

Technologies used

• ...

- · Assessment of gas reserves in oil fields?
- Incentives to favour associated gas production
- Gas flaring reduction initiatives

Frontier exploration areas

Definition

a basin or a play where the exploration activities have not been carried out sufficiently, and where it
is considered that there is a significant part of hydrocarbon that could be categorized as
undiscovered volume

Challenge

- Improve acquisition of data
- Access to deep / challenging environments

Technologies used

- deep see drilling, and deep wells
- Progresses in imaging (Subsalt, sub-basalt, multi azimuth, inversion progresses)
- Arctic condition exploration
- ...

- re-evaluation of recent advances in frontier basins
- State of art of Current Challenges/ technologies

Unconventional

Definition

- refers to gas resources which unlikely classical reservoirs are not confined by geological discrete boundaries, are regional in extent, not buoyant upon water, and subject to abnormal pressures.
- Tight sands, Shale gas and CBM are main classifications

Challenge

- Prediction of reserves/flowrates
- Sustainability
- Heterogeneity of production
- Environmental impact (site pads, water use, fraccing)
- Acceptance

Technologies used

- Rock Physics studies
- Well fraccing (efficiency, low water use...)
- Well design
- ...

- Review of reserves and production areas
- Acceptance
- Evolution on techniques

New sources?

Definition

- Refers to new gas resources which are not presently produced
- Hydrates, Abiogenic

Challenges

- Identify methane concentrated zones
- Define and improve production methods to reach economicity (nrj and cost)

Technologies used

- Hydrate: depressurization method-based approach?
- ...
- Concepts of charge

- Review of reserves and production areas
- Evolution on techniques and expected future